咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 llama
  • 1 篇 introductory pro...
  • 1 篇 large language m...
  • 1 篇 distractor gener...
  • 1 篇 student learning...
  • 1 篇 gpt

机构

  • 1 篇 carnegie mellon ...
  • 1 篇 univ pittsburgh ...

作者

  • 1 篇 hendrawan rully ...
  • 1 篇 akhuseyinoglu ka...
  • 1 篇 narayanan arun b...
  • 1 篇 agarwal arav
  • 1 篇 savelka jaromir
  • 1 篇 brusilovsky pete...
  • 1 篇 hassany mohammad

语言

  • 1 篇 英文
检索条件"主题词=Student Learning Data"
1 条 记 录,以下是1-10 订阅
排序:
Generating Effective Distractors for Introductory Programming Challenges: LLMs vs Humans  25
Generating Effective Distractors for Introductory Programmin...
收藏 引用
15th International Conference on learning Analytics and Knowledge
作者: Hassany, Mohammad Brusilovsky, Peter Savelka, Jaromir Narayanan, Arun Balajiee Lekshmi Akhuseyinoglu, Kamil Agarwal, Arav Hendrawan, Rully Agus Univ Pittsburgh Pittsburgh PA 15260 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA
As large language models (LLMs) show great promise in generating a wide spectrum of educational materials, robust yet costeffective assessment of the quality and effectiveness of such materials becomes an important ch... 详细信息
来源: 评论