Computing the Sparse Fast Fourier Transform(sFFT) has emerged as a critical topic for a long time. The sFFT algorithms decrease the runtime and sampling complexity by taking advantage of the signal's inherent char...
详细信息
Computing the Sparse Fast Fourier Transform(sFFT) has emerged as a critical topic for a long time. The sFFT algorithms decrease the runtime and sampling complexity by taking advantage of the signal's inherent characteristics that a large number of signals are sparse in the frequency domain. More than ten sFFT algorithms have been proposed, which can be classified into many types according to filter, framework, method of location, method of estimation. In this paper, the technology of these algorithms is completely analyzed in theory. The performance of them is thoroughly tested and verified in practice. The techniques involved in different sFFT algorithms include the following contents: five operations of signal, three methods of frequency bucketization, five methods of location, four methods of estimation, two problems caused by bucketization, three methods to solve these two problems, four algorithmic frameworks. All the above technologies and methods are introduced in detail and examples are given to illustrate the above research. After theoretical research, we make experiments for computing the signals of different SNR, length, sparsity by a standard testing platform and record the run time, percentage of the signal sampled and L-0, L-1, L-2 error with eight different typical sFFT algorithms. The result of experiments satisfies the inferences obtained in theory. It helps us to optimize these algorithms and use them selectively.
The problem of computing the Sparse Fast Fourier Transform(sFFT) of a-sparse signal of sizeS has received significant attention for a long time. The first stage of sFFT is hashing the frequency coefficients into bucke...
详细信息
The problem of computing the Sparse Fast Fourier Transform(sFFT) of a-sparse signal of sizeS has received significant attention for a long time. The first stage of sFFT is hashing the frequency coefficients into buckets named frequency bucketization. The process of frequency bucketization is achieved through the use of filters: Dirichlet kernel filter, aliasing filter, flat filter, etc. The frequency bucketization through these filters can decrease runtime and sampling complexity in low dimensions. It is a hot topic about sFFT algorithms using the flat filter because of its convenience and efficiency since its emergence and wide application. The next stage of sFFT is the spectrum reconstruction by identifying frequencies that are isolated in their buckets. Up to now, there are more than thirty different sFFT algorithms using the sFFT idea as mentioned above by their unique methods. An important question now is how to analyze and evaluate the performance of these sFFT algorithms in theory and practice. In this paper, it is mainly discussed about sFFT algorithms using the flat filter. In the first part, the paper introduces the techniques in detail, including two types of frameworks, five different methods to reconstruct spectrum and corresponding algorithms. We get the conclusion of the performance of these five algorithms, including runtime complexity, sampling complexity and robustness in theory. In the second part, we make three categories of experiments for computing the signals of different SNR, different , and different by a standard testing platform and record the run time, percentage of the signal sampled, and error both in the exactly sparse case and general sparse case. The result of experiments is consistent with the inferences obtained in theory. It can help us to optimize these algorithms and use them correctly in the right areas.
A basic computational primitive in the analysis of massive datasets is summing simple functions over a large number of objects. Modern applications pose an additional challenge in that such functions often depend on a...
详细信息
ISBN:
(纸本)9781728149523
A basic computational primitive in the analysis of massive datasets is summing simple functions over a large number of objects. Modern applications pose an additional challenge in that such functions often depend on a parameter vector y (query) that is unknown a priori. Given a set of points X and a pairwise function w(x,y), we study the problem of designing a data-structure that enables sublinear-time approximation of the summation of w(x,y) for all x in X for any query point y. By combining ideas from Harmonic Analysis (partitions of unity and approximation theory) with Hashing-Based-Estimators [Charikar, Siminelakis FOCS'17], we provide a general framework for designing such data structures through hashing that reaches far beyond what previous techniques allowed. A key design principle is constructing a collection of hash families, each inducing a different collision probability between points in the dataset, such that the pointwise supremum of the collision probabilities scales as the square root of the function w(x,y). This leads to a data-structure that approximates pairwise summations using a sub-linear number of samples from each hash family. Using this new framework along with Distance Sensitive Hashing [Aumuller, Christiani, Pagh, Silvestri PODS'18], we show that such a collection can be constructed and evaluated efficiently for log-convex functions of the inner product between two vectors. Our method leads to data structures with sub-linear query time that significantly improve upon random sampling and can be used for Kernel Density, Partition Function Estimation and sampling.
We study sublinear time algorithms for estimating the size of maximum matching. After a long line of research, the problem was finally settled by Behnezhad [FOCS’22], in the regime where one is willing to pay an app...
详细信息
ISBN:
(纸本)9781450399135
We study sublinear time algorithms for estimating the size of maximum matching. After a long line of research, the problem was finally settled by Behnezhad [FOCS’22], in the regime where one is willing to pay an approximation factor of 2. Very recently, Behnezhad et al. [SODA’23] improved the approximation factor to (2−1/2O(1/γ)) using n1+γ time. This improvement over the factor 2 is, however, minuscule and they asked if even 1.99-approximation is possible in n2−Ω(1) time. We give a strong affirmative answer to this open problem by showing (1.5+є)-approximation algorithms that run in n2−Θ(є2) time. Our approach is conceptually simple and diverges from all previous sublinear-time matching algorithms: we show a sublinear time algorithm for computing a variant of the edge-degree constrained subgraph (EDCS), a concept that has previously been exploited in dynamic [Bernstein Stein ICALP’15, SODA’16], distributed [Assadi et al. SODA’19] and streaming [Bernstein ICALP’20] settings, but never before in the sublinear setting.
暂无评论