咨询与建议

限定检索结果

文献类型

  • 74 篇 期刊文献
  • 12 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 91 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 23 篇 计算机科学与技术...
    • 16 篇 控制科学与工程
    • 15 篇 软件工程
    • 11 篇 电气工程
    • 7 篇 机械工程
    • 7 篇 石油与天然气工程
    • 4 篇 信息与通信工程
    • 3 篇 交通运输工程
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 土木工程
  • 57 篇 管理学
    • 57 篇 管理科学与工程(可...
    • 4 篇 工商管理
  • 54 篇 理学
    • 50 篇 数学
    • 2 篇 物理学
    • 2 篇 系统科学
    • 1 篇 化学
    • 1 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 6 篇 经济学
    • 4 篇 应用经济学
    • 2 篇 理论经济学

主题

  • 91 篇 subgradient opti...
  • 21 篇 lagrangian relax...
  • 13 篇 lagrangean relax...
  • 7 篇 convex programmi...
  • 6 篇 nondifferentiabl...
  • 6 篇 scheduling
  • 5 篇 lagrangean duali...
  • 4 篇 lagrangian duali...
  • 4 篇 lagrange multipl...
  • 4 篇 dynamic programm...
  • 3 篇 distributed opti...
  • 3 篇 ergodic converge...
  • 3 篇 thesis
  • 3 篇 set-covering
  • 3 篇 integer programm...
  • 3 篇 stochastic progr...
  • 3 篇 steelmaking-cont...
  • 3 篇 primal recovery
  • 2 篇 mean-risk object...
  • 2 篇 traveling salesm...

机构

  • 3 篇 polish acad sci ...
  • 3 篇 northeastern uni...
  • 2 篇 clemson univ dep...
  • 2 篇 korea adv inst s...
  • 2 篇 pusan natl univ ...
  • 2 篇 linkoping inst t...
  • 2 篇 univ connecticut...
  • 2 篇 cent univ venezu...
  • 2 篇 texas a&m univer...
  • 2 篇 linkoping univ d...
  • 2 篇 univ connecticut...
  • 2 篇 kyungsung univ d...
  • 1 篇 mcgill univ fac ...
  • 1 篇 tsinghua univ de...
  • 1 篇 covenant univ co...
  • 1 篇 univ bologna dei...
  • 1 篇 anhui univ sci &...
  • 1 篇 school of manage...
  • 1 篇 dokuz eylul univ...
  • 1 篇 northeastern uni...

作者

  • 3 篇 pan quan-ke
  • 3 篇 tu f
  • 3 篇 mao kun
  • 3 篇 chai tianyou
  • 3 篇 kiwiel kc
  • 2 篇 pattipati kr
  • 2 篇 larsson t
  • 2 篇 hwang h
  • 2 篇 kim kh
  • 2 篇 ventura ja
  • 2 篇 malepati vn
  • 2 篇 crema alejandro
  • 2 篇 shetty b
  • 2 篇 liu zhuangwei
  • 2 篇 ko cs
  • 2 篇 larsson torbjörn
  • 2 篇 pang xinfu
  • 2 篇 sen s
  • 2 篇 patriksson micha...
  • 2 篇 stromberg ann-br...

语言

  • 87 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=Subgradient Optimization"
91 条 记 录,以下是1-10 订阅
排序:
Two "well-known" properties of subgradient optimization
收藏 引用
MATHEMATICAL PROGRAMMING 2009年 第1期120卷 213-220页
作者: Anstreicher, Kurt M. Wolsey, Laurence A. Univ Iowa Dept Management Sci Iowa City IA 52242 USA Univ Catholique Louvain Ctr Operat Res & Econometr B-1348 Louvain Belgium
The subgradient method is both a heavily employed and widely studied algorithm for non-differentiable optimization. Nevertheless, there are some basic properties of subgradient optimization that, while "well know... 详细信息
来源: 评论
A GENERALIZATION OF POLYAK CONVERGENCE RESULT FOR subgradient optimization
收藏 引用
MATHEMATICAL PROGRAMMING 1987年 第3期37卷 309-317页
作者: ALLEN, E HELGASON, R KENNINGTON, J SHETTY, B TEXAS A&M UNIV DEPT BUSINESS ANALCOLLEGE STNTX 77843
This paper generalizes a practical convergence result first presented by Polyak. This new result presents a theoretical justification for the step size which has been successfully used in several specialized algorithm... 详细信息
来源: 评论
Distributed online adaptive subgradient optimization with dynamic bound of learning rate over time-varying networks
收藏 引用
IET CONTROL THEORY AND APPLICATIONS 2022年 第18期16卷 1834-1846页
作者: Fang, Runyue Li, Dequan Shen, Xiuyu Anhui Univ Sci & Technol Sch Math & Big Data Huaina Peoples R China Anhui Univ Sci & Technol Sch Artificial Intelligence Huainan 232000 Peoples R China Southeast Univ Sch Transportat Nanjing Peoples R China
Adaptive online optimization algorithms, such as Adam, RMSprop, and AdaBound, have recently been tremendously popular as they have been widely applied to address the issues in the field of deep learning. Despite their... 详细信息
来源: 评论
Variable-fixing then subgradient optimization guided very large scale neighborhood search for the generalized assignment problem
收藏 引用
4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH 2019年 第3期17卷 261-295页
作者: Haddadi, Salim 8 Mai 1945 Univ LabSTIC BP 401 Guelma 24000 Algeria
We propose a two-phase heuristic for the generalized assignment problem (GAP). The first phase-a generic variable-fixing method-heuristically eliminates up to 98% of the variables without sacrificing the solution qual... 详细信息
来源: 评论
Validation of subgradient optimization
收藏 引用
Mathematical Programming 1974年 第1期6卷 62-88页
作者: Held, Michael Wolfe, Philip Crowder, Harlan P. IBM Systems Research Institute New York United States IBM Watson Research Center Yorktown Heights New York United States
The “relaxation” procedure introduced by Held and Karp for approximately solving a large linear programming problem related to the traveling-salesman problem is refined and studied experimentally on several classes ... 详细信息
来源: 评论
Lagrangean relaxation and subgradient optimization applied to optimal design with discrete sizing
收藏 引用
Engineering optimization 1990年 第3期16卷 221-233页
作者: Ŏrjan, Jonsson Torbjörn, Larsson Department of Mathematics Linköping Institute of Technology S-581 83 Linköping Sweden
The discrete sizing problem in optimal design is adressed. Lagrangean dual approaches earlier published are briefly reviewed and it is noted that quite sophisticated procedures have been used to solve the dual problem... 详细信息
来源: 评论
Primal convergence from dual subgradient methods for convex optimization
收藏 引用
MATHEMATICAL PROGRAMMING 2015年 第2期150卷 365-390页
作者: Gustavsson, Emil Patriksson, Michael Stromberg, Ann-Brith Chalmers Univ Technol Dept Math Sci S-41296 Gothenburg Sweden Univ Gothenburg Dept Math Sci S-41296 Gothenburg Sweden
When solving a convex optimization problem through a Lagrangian dual reformulation subgradient optimization methods are favorably utilized, since they often find near-optimal dual solutions quickly. However, an optima... 详细信息
来源: 评论
A RANDOMIZED INCREMENTAL subgradient METHOD FOR DISTRIBUTED optimization IN NETWORKED SYSTEMS
收藏 引用
SIAM JOURNAL ON optimization 2009年 第3期20卷 1157-1170页
作者: Johansson, Bjorn Rabi, Maben Johansson, Mikael Royal Inst Technol KTH Sch Elect Engn S-10044 Stockholm Sweden
We present an algorithm that generalizes the randomized incremental subgradient method with fixed stepsize due to Nedic and Bertsekas [SIAM J. Optim., 12 (2001), pp. 109-138]. Our novel algorithm is particularly suita... 详细信息
来源: 评论
The efficiency of subgradient projection methods for convex optimization .1. General level methods
收藏 引用
SIAM JOURNAL ON CONTROL AND optimization 1996年 第2期34卷 660-676页
作者: Kiwiel, KC Systems Research Institute 01-447 Warsaw Newelska 6 Poland
We study subgradient methods for convex optimization that use projections onto successive approximations of level sets of the objective corresponding to estimates of the optimal value. We present several variants and ... 详细信息
来源: 评论
Convergence of approximate and incremental subgradient methods for convex optimization
收藏 引用
SIAM JOURNAL ON optimization 2004年 第3期14卷 807-840页
作者: Kiwiel, KC Polish Acad Sci Syst Res Inst PL-01447 Warsaw Poland
We present a unified convergence framework for approximate subgradient methods that covers various stepsize rules (including both diminishing and nonvanishing stepsizes), convergence in objective values, and convergen... 详细信息
来源: 评论