咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献

馆藏范围

  • 10 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 理学
    • 8 篇 数学
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 4 篇 工学
    • 2 篇 电气工程
    • 2 篇 控制科学与工程
    • 2 篇 软件工程

主题

  • 10 篇 subgradient algo...
  • 2 篇 distributed opti...
  • 2 篇 nondifferentiabl...
  • 2 篇 convex minimizat...
  • 2 篇 convex programmi...
  • 2 篇 convex optimizat...
  • 1 篇 random algorithm...
  • 1 篇 distributed mult...
  • 1 篇 error bounds
  • 1 篇 fair division th...
  • 1 篇 primal-dual lagr...
  • 1 篇 entropic project...
  • 1 篇 convex feasibili...
  • 1 篇 constraints
  • 1 篇 bundle methods
  • 1 篇 functional const...
  • 1 篇 successive proje...
  • 1 篇 consensus
  • 1 篇 lagrangean relax...
  • 1 篇 nondifferentiabl...

机构

  • 2 篇 polish acad sci ...
  • 1 篇 univ illinois in...
  • 1 篇 cnr ist anal sis...
  • 1 篇 tel aviv univ sc...
  • 1 篇 columbia univ gr...
  • 1 篇 univ illinois de...
  • 1 篇 univ windsor fac...
  • 1 篇 univ politehn bu...
  • 1 篇 arizona state un...
  • 1 篇 univ la sapienza...
  • 1 篇 luiss univ rome
  • 1 篇 univ calif berke...
  • 1 篇 univ calif berke...
  • 1 篇 univ lyon 1 dept...
  • 1 篇 mit lab informat...

作者

  • 3 篇 nedic angelia
  • 2 篇 kiwiel kc
  • 1 篇 necoara ion
  • 1 篇 duchi john c.
  • 1 篇 auslender a
  • 1 篇 di luca camilla
  • 1 篇 teboulle m
  • 1 篇 wainwright marti...
  • 1 篇 nobili p
  • 1 篇 punnen ap
  • 1 篇 parrilo pablo a.
  • 1 篇 sassano a
  • 1 篇 ozdaglar asuman
  • 1 篇 ceria s
  • 1 篇 aneja yp
  • 1 篇 agarwal alekh
  • 1 篇 dall'aglio marco

语言

  • 9 篇 英文
  • 1 篇 其他
检索条件"主题词=Subgradient algorithms"
10 条 记 录,以下是1-10 订阅
排序:
Random Minibatch subgradient algorithms for Convex Problems with Functional Constraints
收藏 引用
APPLIED MATHEMATICS AND OPTIMIZATION 2019年 第3期80卷 801-833页
作者: Nedic, Angelia Necoara, Ion Arizona State Univ Sch Elect Comp & Energy Engn Tempe AZ USA Univ Politehn Bucuresti Dept Automat Control & Syst Engn Bucharest 060042 Romania
In this paper we consider non-smooth convex optimization problems with (possibly) infinite intersection of constraints. In contrast to the classical approach, where the constraints are usually represented as intersect... 详细信息
来源: 评论
subgradient method with entropic projections for convex nondifferentiable minimization
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 1998年 第1期96卷 159-173页
作者: Kiwiel, KC Polish Acad Sci Syst Res Inst PL-01447 Warsaw Poland
We replace orthogonal projections in the Polyak subgradient method for nonnegatively constrained minimization with entropic projections, thus obtaining an interior-point subgradient method. Inexact entropic projection... 详细信息
来源: 评论
Interior gradient and epsilon-subgradient descent methods for constrained convex minimization
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 2004年 第1期29卷 1-26页
作者: Auslender, A Teboulle, M Univ Lyon 1 Dept Math F-69365 Lyon France Tel Aviv Univ Sch Math Sci IL-69978 Tel Aviv Israel
We extend epsilon-subgradient descent methods for unconstrained nonsmooth convex minimization to constrained problems over polyhedral sets, in particular over R-+(p). This is done by replacing the usual squared quadra... 详细信息
来源: 评论
Constrained Consensus and Optimization in Multi-Agent Networks
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2010年 第4期55卷 922-938页
作者: Nedic, Angelia Ozdaglar, Asuman Parrilo, Pablo A. Univ Illinois Ind & Enterprise Syst Engn Dept Urbana IL 61801 USA MIT Lab Informat & Decis Syst Dept Elect Engn & Comp Sci Cambridge MA 02139 USA
We present distributed algorithms that can be used by multiple agents to align their estimates with a particular value over a network with time-varying connectivity. Our framework is general in that this value can rep... 详细信息
来源: 评论
Generalized Bregman projections in convex feasibility problems
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 1998年 第1期96卷 139-157页
作者: Kiwiel, KC Polish Acad Sci Syst Res Inst PL-01447 Warsaw Poland
We present a method for finding common points of finitely many closed convex sets in Euclidean space. The Bregman extension of the classical method of cyclic orthogonal projections employs nonorthogonal projections in... 详细信息
来源: 评论
A Lagrangian-based heuristic for large-scale set covering problems
收藏 引用
MATHEMATICAL PROGRAMMING 1998年 第2期81卷 215-228页
作者: Ceria, S Nobili, P Sassano, A Columbia Univ Grad Sch Business New York NY 10027 USA CNR Ist Anal Sistemi & Informat I-00185 Rome Italy Univ La Sapienza Dipartimento Informat & Sistemist I-00185 Rome Italy
We present a new Lagrangian-based heuristic for solving large-scale set-covering problems arising from crew-scheduling at the Italian Railways (Ferrovie dello Stato). Our heuristic obtained impressive results when com... 详细信息
来源: 评论
Random algorithms for convex minimization problems
收藏 引用
MATHEMATICAL PROGRAMMING 2011年 第2期129卷 225-253页
作者: Nedic, Angelia Univ Illinois Dept Ind & Enterprise Syst Engn Urbana IL 61801 USA
This paper deals with iterative gradient and subgradient methods with random feasibility steps for solving constrained convex minimization problems, where the constraint set is specified as the intersection of possibl... 详细信息
来源: 评论
MINMAX COMBINATORIAL OPTIMIZATION
收藏 引用
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 1995年 第3期81卷 634-643页
作者: PUNNEN, AP ANEJA, YP UNIV WINDSOR FAC BUSINESS ADMWINDSORON N9B 3P4CANADA
Let E be a finite set, and F be a family of subsets of E. For each element e is-an-element-of E, p weights c(i), e, i = 1, 2, ..., p are prescribed. Then the minmax combinatorial optimization problem is to Minimize S ... 详细信息
来源: 评论
Finding maxmin allocations in cooperative and competitive fair division
收藏 引用
ANNALS OF OPERATIONS RESEARCH 2014年 第1期223卷 121-136页
作者: Dall'Aglio, Marco Di Luca, Camilla LUISS Univ Rome Italy
We define a subgradient algorithm to compute the maxmin value of a completely divisible good in both competitive and cooperative strategic contexts. The algorithm relies on the construction of upper and lower bounds f... 详细信息
来源: 评论
Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling
收藏 引用
IEEE TRANSACTIONS ON AUTOMATIC CONTROL 2012年 第3期57卷 592-606页
作者: Duchi, John C. Agarwal, Alekh Wainwright, Martin J. Univ Calif Berkeley Dept Elect Engn & Comp Sci Berkeley CA 94720 USA Univ Calif Berkeley Dept Stat Berkeley CA 94720 USA
The goal of decentralized optimization over a network is to optimize a global objective formed by a sum of local (possibly nonsmooth) convex functions using only local computation and communication. It arises in vario... 详细信息
来源: 评论