咨询与建议

限定检索结果

文献类型

  • 13 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 20 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 16 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 2 篇 软件工程
  • 7 篇 理学
    • 6 篇 数学
    • 3 篇 生物学
    • 2 篇 统计学(可授理学、...
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 文学
    • 1 篇 新闻传播学

主题

  • 20 篇 subgraph samplin...
  • 3 篇 graph mining
  • 3 篇 subgraph enumera...
  • 2 篇 graph neural net...
  • 2 篇 random walk
  • 2 篇 subgraph concent...
  • 2 篇 data mining
  • 2 篇 random walks
  • 2 篇 network motif de...
  • 2 篇 graph convolutio...
  • 2 篇 sublinear algori...
  • 1 篇 ethereum
  • 1 篇 graphlet countin...
  • 1 篇 motif
  • 1 篇 deep learning
  • 1 篇 graph convolutio...
  • 1 篇 influence
  • 1 篇 polymatroid boun...
  • 1 篇 recommender syst...
  • 1 篇 node classificat...

机构

  • 2 篇 univ massachuset...
  • 2 篇 univ jena inst i...
  • 2 篇 chinese univ hon...
  • 1 篇 guangdong key la...
  • 1 篇 penn state univ ...
  • 1 篇 china jiliang un...
  • 1 篇 univ southern ca...
  • 1 篇 hans bredow inst...
  • 1 篇 utron technol co...
  • 1 篇 univ bremen zemk...
  • 1 篇 galgotias coll e...
  • 1 篇 chaudhary charan...
  • 1 篇 univ calif davis...
  • 1 篇 nanjing univ inf...
  • 1 篇 zhejiang univ co...
  • 1 篇 google mountain ...
  • 1 篇 chinese univ hon...
  • 1 篇 sun yat sen univ...
  • 1 篇 zhejiang univ te...
  • 1 篇 fujian univ tech...

作者

  • 3 篇 bressan marco
  • 2 篇 zhao junzhou
  • 2 篇 wang pinghui
  • 2 篇 tao jing
  • 2 篇 lui john c. s.
  • 2 篇 wernicke sebasti...
  • 2 篇 towsley don
  • 1 篇 wu ou
  • 1 篇 louis paul
  • 1 篇 zhou hongkuan
  • 1 篇 jacob shweta ann
  • 1 篇 gao jixun
  • 1 篇 jiang yangfan
  • 1 篇 kumar ravi
  • 1 篇 li panpan
  • 1 篇 zhang ji
  • 1 篇 fu yao
  • 1 篇 xue xingsi
  • 1 篇 kannan rajgopal
  • 1 篇 zhu hai

语言

  • 19 篇 英文
  • 1 篇 其他
检索条件"主题词=Subgraph sampling"
20 条 记 录,以下是1-10 订阅
排序:
Robust Size Estimation of Online Social Networks via subgraph sampling
收藏 引用
IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING 2020年 第4期7卷 2702-2713页
作者: Jiang, Yangfan Fu, Yao Zhou, Yipeng Wu, Di Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Peoples R China Guangdong Key Lab Big Data Anal & Proc Guangzhou 510006 Peoples R China Sun Yat Sen Univ Key Lab Machine Intelligence & Adv Comp Minist Educ Guangzhou 510006 Guangdong Peoples R China Macquarie Univ Dept Comp Fac Sci & Engn Macquarie Pk NSW 2109 Australia
Estimating the number of nodes in a large-scale online social network is a fundamental problem in the field of network science. However, it is observed that the performance of traditional RW (Random Walk)-based networ... 详细信息
来源: 评论
Join sampling Under Acyclic Degree Constraints and (Cyclic) subgraph sampling  27
Join Sampling Under Acyclic Degree Constraints and (Cyclic) ...
收藏 引用
27th International Conference on Database Theory (ICDT)
作者: Wang, Ru Tao, Yufei Chinese Univ Hong Kong Hong Kong Peoples R China
Given a (natural) join with an acyclic set of degree constraints (the join itself does not need to be acyclic), we show how to draw a uniformly random sample from the join result in O(polymat/ max{1, OUT}) expected ti... 详细信息
来源: 评论
A subgraph sampling method for training large-scale graph convolutional network
收藏 引用
INFORMATION SCIENCES 2023年 649卷
作者: Zhang, Qi Sun, Yanfeng Hu, Yongli Wang, Shaofan Yin, Baocai Beijing Univ Technol Fac Informat Technol Beijing Key Lab Multimedia & Intelligent Software Beijing 100124 Peoples R China
Graph Convolutional Network (GCN) is a powerful model for graph representation learning. Since GCN updates nodes with a recursive neighbor aggregation scheme, training GCN on large-scale graphs suffers from enormous c... 详细信息
来源: 评论
Graph Anomaly Detection via Multiscale Contrastive Self-Supervised Learning From Local to Global
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS 2025年 第2期12卷 485-497页
作者: Wang, Xiaofeng Lai, Shuaiming Zhu, Shuailei Chen, Yuntao Lv, Laishui Qi, Yuanyuan China Jiliang Univ Sch Informat Engn Hangzhou 310018 Peoples R China
Graph anomaly detection is a challenging task in graph data mining, aiming to recognize unconventional patterns within a network. Recently, there has been increasing attention on graph anomaly detection based on contr... 详细信息
来源: 评论
Effectiveness and Efficiency: Label- Aware Hierarchical subgraph Learning for Protein-Protein Interaction
收藏 引用
JOURNAL OF MOLECULAR BIOLOGY 2025年 第6期437卷 168737页
作者: Zhou, Yuanqing Lin, Haitao Xie, Lianghua Huang, Yufei Wu, Lirong Li, Stan Z. Chen, Wei Zhejiang Univ Coll Biosyst Engn & Food Sci Dept Food Sci & Nutr Hangzhou 310058 Peoples R China Westlake Univ Res Ctr Ind Future AI Lab Hangzhou 310024 Peoples R China
The study of protein-protein interactions (PPIs) holds immense significance in understanding various biological activities, as well as in drug discovery and disease diagnosis. Existing deep learning methods for PPI pr... 详细信息
来源: 评论
Measuring and sampling: A metric-guided subgraph learning framework for graph neural network
收藏 引用
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 2022年 第10期37卷 7502-7525页
作者: Bai, Jiyang Ren, Yuxiang Zhang, Jiawei Florida State Univ Dept Comp Sci Tallahassee FL 32306 USA Florida State Univ Dept Comp Sci IFM Lab Tallahassee FL 32306 USA Univ Calif Davis Dept Comp Sci IFM Lab Davis CA 95616 USA
Graph neural networks (GNNs) have shown convincing performance in learning powerful node representations that preserve both node attributes and graph structural information. However, many GNNs encounter problems in ef... 详细信息
来源: 评论
SARW: Similarity-Aware Random Walk for GCN
收藏 引用
INTELLIGENT DATA ANALYSIS 2023年 第6期27卷 1615-1636页
作者: Hou, Linlin Zhang, Haixiang Hou, Qing-Hu Guo, Alan J. X. Wu, Ou Yu, Ting Zhang, Ji Zhejiang Lab Hangzhou Zhejiang Peoples R China Tianjin Univ Ctr Appl Math Tianjin Peoples R China Univ Southern Queensland Darling Hts Australia
Graph Convolutional Network (GCN) is an important method for learning graph representations of nodes. For large-scale graphs, the GCN could meet with the neighborhood expansion phenomenon, which makes the model comple... 详细信息
来源: 评论
Inferring Higher-Order Structure Statistics of Large Networks from Sampled Edges
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2019年 第1期31卷 61-74页
作者: Wang, Pinghui Qi, Yiyan Lui, John C. S. Towsley, Don Zhao, Junzhou Tao, Jing Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur POB 108828 Xianning West Rd Xian 710049 Shaanxi Peoples R China Chinese Univ Hong Kong Dept Comp Sci & Engn Shatin Hong Kong Peoples R China Univ Massachusetts Dept Comp Sci Amherst MA 01003 USA
Recently exploring locally connected subgraphs (also known as motifs or graphlets) of complex networks attracts a lot of attention. Previous work made the strong assumption that the graph topology of interest is known... 详细信息
来源: 评论
MOSS-5: A Fast Method of Approximating Counts of 5-Node Graphlets in Large Graphs
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2018年 第1期30卷 73-86页
作者: Wang, Pinghui Zhao, Junzhou Zhang, Xiangliang Li, Zhenguo Cheng, Jiefeng Lui, John C. S. Towsley, Don Tao, Jing Guan, Xiaohong Xi An Jiao Tong Univ MOE Key Lab Intelligent Networks & Network Secur Xianning West Rd Xian 710049 Shaanxi Peoples R China Xi An Jiao Tong Univ Shenzhen Res Inst Shenzhen 518057 Peoples R China Chinese Univ Hong Kong Dept Comp Sci & Engn Shatin Hong Kong Peoples R China King Abdullah Univ Sci & Technol Machine Intelligence & Knowledge Engn MINE Lab Thuwal 23955 Saudi Arabia Huawei Noahs Ark Lab Shatin Hong Kong Peoples R China Tencent Cloud Secur Lab Shenzhen 518057 Peoples R China Univ Massachusetts Dept Comp Sci Amherst MA 01003 USA Tsinghua Univ Ctr Intelligent & Networked Syst Tsinghua Natl Lab Informat Sci & Technol Beijing Peoples R China
Counting 3-, 4-, and 5-node graphlets in graphs is important for graph mining applications such as discovering abnormal/evolution patterns in social and biology networks. In addition, it is recently widely used for co... 详细信息
来源: 评论
Efficient and Near-optimal Algorithms for sampling Small Connected subgraphs
收藏 引用
ACM TRANSACTIONS ON ALGORITHMS 2023年 第3期19卷 1-40页
作者: Bressan, Marco Univ Milan Dipartimento Informat Via Celoria 18 I-20133 Milan Italy
We study the following problem: Given an integer k >= 3 and a simple graph G, sample a connected induced k-vertex subgraph ofG uniformly at random. This is a fundamental graph mining primitive with applications in ... 详细信息
来源: 评论