咨询与建议

限定检索结果

文献类型

  • 62 篇 会议
  • 49 篇 期刊文献
  • 5 篇 学位论文

馆藏范围

  • 116 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 105 篇 工学
    • 98 篇 计算机科学与技术...
    • 27 篇 软件工程
    • 6 篇 电气工程
    • 5 篇 控制科学与工程
    • 1 篇 光学工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 生物工程
  • 76 篇 理学
    • 75 篇 数学
    • 2 篇 统计学(可授理学、...
    • 1 篇 物理学
    • 1 篇 生物学
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 116 篇 sublinear algori...
  • 33 篇 property testing
  • 11 篇 approximation al...
  • 9 篇 random walks
  • 7 篇 graph algorithms
  • 5 篇 local computatio...
  • 5 篇 voting
  • 5 篇 randomized algor...
  • 4 篇 monotonicity
  • 4 篇 embedding
  • 4 篇 approximation
  • 4 篇 distributed algo...
  • 4 篇 pagerank
  • 4 篇 sparse approxima...
  • 4 篇 sketching
  • 4 篇 edit distance
  • 3 篇 local algorithms
  • 3 篇 distribution tes...
  • 3 篇 clustering
  • 3 篇 computational co...

机构

  • 6 篇 weizmann inst sc...
  • 5 篇 mit csail cambri...
  • 4 篇 ecole polytech f...
  • 4 篇 tel aviv univ te...
  • 3 篇 sandia natl labs...
  • 3 篇 princeton univ p...
  • 3 篇 univ michigan de...
  • 3 篇 microsoft res re...
  • 3 篇 mit cambridge ma...
  • 3 篇 columbia univ de...
  • 3 篇 carnegie mellon ...
  • 3 篇 univ calif santa...
  • 3 篇 columbia univ ny...
  • 3 篇 univ penn philad...
  • 3 篇 tel aviv univ il...
  • 3 篇 natl univ singap...
  • 3 篇 stanford univ st...
  • 3 篇 pennstate univer...
  • 3 篇 univ michigan de...
  • 2 篇 weizmann institu...

作者

  • 12 篇 seshadhri c.
  • 7 篇 bressan marco
  • 7 篇 ron dana
  • 5 篇 woodruff david p...
  • 5 篇 peserico enoch
  • 5 篇 pretto luca
  • 5 篇 raskhodnikova so...
  • 4 篇 rubinfeld ronitt
  • 4 篇 gilbert anna c.
  • 3 篇 strauss martin j...
  • 3 篇 rubinstein aviad
  • 3 篇 kapralov michael
  • 3 篇 andoni alexandr
  • 3 篇 eden talya
  • 3 篇 czumaj artur
  • 3 篇 jahja irvan
  • 3 篇 vardi shai
  • 3 篇 talmon nimrod
  • 3 篇 yu haifeng
  • 3 篇 servedio rocco a...

语言

  • 116 篇 英文
检索条件"主题词=Sublinear algorithms"
116 条 记 录,以下是81-90 订阅
排序:
Efficient and Near-Optimal algorithms for Sampling Connected Subgraphs  2021
Efficient and Near-Optimal Algorithms for Sampling Connected...
收藏 引用
53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC)
作者: Bressan, Marco Univ Statale Milano Dipartimento Informat Milan Italy
We study the graphlet sampling problem: given an integer k >= 3 and a graph G = (V, E), sample a connected induced k-node subgraph of G (also called k-graphlet) uniformly at random. This is a fundamental graph mini... 详细信息
来源: 评论
Distributed Vision with Smart Pixels
Distributed Vision with Smart Pixels
收藏 引用
25th Annual Symposium on Computational Geometry
作者: Fekete, Sandor P. Fey, Dietmar Komann, Marcus Kroeller, Alexander Reichenbach, Marc Schmidt, Christiane Braunschweig Inst Technol Algorithms Grp Braunschweig Germany
We study a problem related to computer vision: flow can a field of sensors compute higher-level properties of observed objects deterministically in sublinear time, without accessing a central authority? This issue is ... 详细信息
来源: 评论
Property Testing for Bounded Degree Databases  35
Property Testing for Bounded Degree Databases
收藏 引用
35th Symposium on Theoretical Aspects of Computer Science (STACS)
作者: Adler, Isolde Harwath, Frederik Univ Leeds Sch Comp Leeds W Yorkshire England Goethe Univ Inst Informat D-60054 Frankfurt Germany
Aiming at extremely efficient algorithms for big data sets, we introduce property testing of relational databases of bounded degree. Our model generalises the bounded degree model for graphs (Goldreich and Ron, STOC 1... 详细信息
来源: 评论
Separations and Equivalences between Turnstile Streaming and Linear Sketching  2020
Separations and Equivalences between Turnstile Streaming and...
收藏 引用
52nd Annual ACM SIGACT Symposium on Theory of Computing (STOC)
作者: Kallaugher, John Price, Eric Univ Texas Austin Austin TX 78712 USA
A longstanding observation, which was partially proven by Li, Nguyen, and Woodruff in 2014, and extended by Ai, Hu, Li, and Woodruff in 2016, is that any turnstile streaming algorithm can be implemented as a linear sk... 详细信息
来源: 评论
On Approximating the Stationary Distribution of Time-reversible Markov Chains  35
On Approximating the Stationary Distribution of Time-reversi...
收藏 引用
35th Symposium on Theoretical Aspects of Computer Science (STACS)
作者: Bressan, Marco Peserico, Enoch Pretto, Luca Sapienza Univ Roma Dipartimento Informat Rome Italy Univ Padua Dipartimento Ingn Informaz Padua Italy
Approximating the stationary probability of a state in a Markov chain through Markov chain Monte Carlo techniques is, in general, inefficient. Standard random walk approaches require (O) over tilde(tau/pi(v)) operatio... 详细信息
来源: 评论
Robust and Sample Optimal algorithms for PSD Low Rank Approximation  61
Robust and Sample Optimal Algorithms for PSD Low Rank Approx...
收藏 引用
61st IEEE Annual Symposium on Foundations of Computer Science (FOCS)
作者: Bakshi, Ainesh Chepurko, Nadiia Woodruff, David P. CMU Pittsburgh PA 15213 USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA
Recently, Musco and Woodruff (FOCS, 2017) showed that given an nxn positive semidefinite (PSD) matrix A, it is possible to compute a (1 + epsilon)-approximate relative-error low-rank approximation to A by querying (O)... 详细信息
来源: 评论
Polylogarithmic Approximation for Edit Distance and the Asymmetric Query Complexity
Polylogarithmic Approximation for Edit Distance and the Asym...
收藏 引用
IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS)
作者: Andoni, Alexandr Krauthgamer, Robert Onak, Krzysztof Princeton Univ CCI Princeton NJ 08544 USA
We present a near-linear time algorithm that approximates the edit distance between two strings within a polylogarithmic factor. For strings of length n and every fixed epsilon > 0, the algorithm computes a (log n)... 详细信息
来源: 评论
Approximating the Spectrum of a Graph  18
Approximating the Spectrum of a Graph
收藏 引用
24th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD)
作者: Cohen-Steiner, David Kong, Weihao Sohler, Christian Valiant, Gregory INRIA Sophia Antipolis Valbonne France Stanford Univ Dept Comp Sci Stanford CA 94305 USA TU Dortmund Dept Comp Sci Dortmund Germany
The spectrum of a network or graph G = (V, E) with adjacency matrix A, consists of the eigenvalues of the normalized Laplacian L = I - D(-1/2)AD(-1/2). This set of eigenvalues encapsulates many aspects of the structur... 详细信息
来源: 评论
Extrapolating the profile of a finite population  33
Extrapolating the profile of a finite population
收藏 引用
33rd Conference on Learning Theory (COLT)
作者: Jana, Soham Polyanskiy, Yury Wu, Yihong Yale Univ Dept Stat & Data Sci New Haven CT 06520 USA MIT Dept EECS 77 Massachusetts Ave Cambridge MA 02139 USA
We study a prototypical problem in empirical Bayes. Namely, consider a population consisting of k individuals each belonging to one of k types (some types can be empty). Without any structural restrictions, it is impo... 详细信息
来源: 评论
Estimating the longest increasing sequence in polylogarithmic time
Estimating the longest increasing sequence in polylogarithmi...
收藏 引用
IEEE 51st Annual Symposium on Foundations of Computer Science (FOCS)
作者: Saks, Michael Seshadhri, C. Rutgers State Univ Dept Math Piscataway NJ 08855 USA IBM Res Corp San Jose CA USA
Finding the length of the longest increasing subsequence (LIS) is a classic algorithmic problem. Let n denote the size of the array. Simple O(n log n) time algorithms are known that determine the LIS exactly. In this ... 详细信息
来源: 评论