subspaceclustering is one of the efficient techniques for determining the clusters in different subsets of dimensions. Ideally, these techniques should find all possible non-redundant clusters in which the data point...
详细信息
subspaceclustering is one of the efficient techniques for determining the clusters in different subsets of dimensions. Ideally, these techniques should find all possible non-redundant clusters in which the data point participates. Unfortunately, existing hard subspace clustering algorithms fail to satisfy this property. Additionally, with the increase in dimensions of data, classical subspacealgorithms become inefficient. This work presents a new density-based subspace clustering algorithm (S_FAD) to overcome the drawbacks of classical algorithms. S_FAD is based on a bottom-up approach and finds subspace clusters of varied density using different parameters of the DBSCAN algorithm. The algorithm optimizes parameters of the DBCAN algorithm through a hybrid meta-heuristic algorithm and uses hashing concepts to discover all non-redundant subspace clusters. The efficacy of S_FAD is evaluated against various existing subspace clustering algorithms on artificial and real datasets in terms of F_Score and rand_index. Performance is assessed based on three parameters: average ranking, SRR ranking, and scalability on varied dimensions. Statistical analysis is performed through the Wilcoxon signed-rank test. Results reveal that S_FAD performs considerably better on the majority of the datasets and scales well up to 6400 dimensions on the actual dataset.
Catheter based radio frequency ablation of atrial fibrillation requires real-time 3D tracking of cardiac surfaces with sub-millimeter accuracy. To best of our knowledge, there are no commercial or non-commercial syste...
详细信息
ISBN:
(纸本)9781424441242
Catheter based radio frequency ablation of atrial fibrillation requires real-time 3D tracking of cardiac surfaces with sub-millimeter accuracy. To best of our knowledge, there are no commercial or non-commercial systems capable to do so. In this paper, a system for high-accuracy 3D tracking of cardiac surfaces in real-time is proposed and results applied to a real patient dataset are presented. Proposed system uses subspace clustering algorithm to identify the potential deformation subspaces for cardiac surfaces during the training phase from pre-operative MRI scan based training set. In Tracking phase, using low-density outer cardiac surface samples, active deformation subspace is identified and complete inner & outer cardiac surfaces are reconstructed in real-time under a least squares formulation.
The development of technology generates huge amounts of non-textual information, such as images. An efficient image annotation and retrieval system is highly desired. clusteringalgorithms make it possible to represen...
详细信息
The development of technology generates huge amounts of non-textual information, such as images. An efficient image annotation and retrieval system is highly desired. clusteringalgorithms make it possible to represent visual features of images with finite symbols. Based on this, many statistical models, which analyze correspondence between visual features and words and discover hidden semantics, have been published. These models improve the annotation and retrieval of large image databases. However, image data usually have a large number of dimensions. Traditional clusteringalgorithms assign equal weights to these dimensions, and become confounded in the process of dealing with these dimensions. In this paper, we propose weighted feature selection algorithm as a solution to this problem. For a given cluster, we determine relevant features based on histogram analysis and assign greater weight to relevant features as compared to less relevant features. We have implemented various different models to link visual tokens with keywords based on the clustering results of K-means algorithm with weighted feature selection and without feature selection, and evaluated performance using precision, recall and correspondence accuracy using benchmark dataset. The results show that weighted feature selection is better than traditional ones for automatic image annotation and retrieval.
暂无评论