咨询与建议

限定检索结果

文献类型

  • 15 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 19 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 7 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 2 篇 机械工程
    • 2 篇 信息与通信工程
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
    • 1 篇 船舶与海洋工程
    • 1 篇 生物工程
  • 6 篇 理学
    • 3 篇 生物学
    • 2 篇 海洋科学
    • 1 篇 物理学
    • 1 篇 化学
  • 2 篇 医学
    • 1 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 理论经济学

主题

  • 19 篇 supervised learn...
  • 3 篇 learning (artifi...
  • 2 篇 training process
  • 2 篇 artificial intel...
  • 1 篇 spiking neural n...
  • 1 篇 multilayer feedf...
  • 1 篇 closed-loop cont...
  • 1 篇 smart homes
  • 1 篇 personal thermal...
  • 1 篇 parallel process...
  • 1 篇 mlps
  • 1 篇 nonwoven materia...
  • 1 篇 random forest
  • 1 篇 fpga device
  • 1 篇 ensemble learnin...
  • 1 篇 piecewise polyno...
  • 1 篇 embedded memory ...
  • 1 篇 closed loop syst...
  • 1 篇 mra level
  • 1 篇 pattern classifi...

机构

  • 1 篇 marathwada mitra...
  • 1 篇 univ sains malay...
  • 1 篇 dalian univ tech...
  • 1 篇 shanghai maritim...
  • 1 篇 natl def med col...
  • 1 篇 hokkaido univ gr...
  • 1 篇 taiwan text res ...
  • 1 篇 univ a coruna fa...
  • 1 篇 harbin engn univ...
  • 1 篇 changsha univ sc...
  • 1 篇 beijing inst hlt...
  • 1 篇 china univ min &...
  • 1 篇 shenzhen univ co...
  • 1 篇 asahi univ dept ...
  • 1 篇 ipag business sc...
  • 1 篇 hokkaido univ gr...
  • 1 篇 comenius univ br...
  • 1 篇 serv sci & innov...
  • 1 篇 new horizon coll...
  • 1 篇 saitama canc ctr...

作者

  • 1 篇 tan xueping
  • 1 篇 huang zhou
  • 1 篇 wang lei
  • 1 篇 cheng chuan
  • 1 篇 hitomi kiyotaka
  • 1 篇 tan yasuo
  • 1 篇 liang jianhong
  • 1 篇 fontenla-romero ...
  • 1 篇 thakre kalpana
  • 1 篇 wang jian
  • 1 篇 liu yang
  • 1 篇 zhu daqi
  • 1 篇 mishchuk oleksan...
  • 1 篇 lim yuto
  • 1 篇 kitagawa yoshima...
  • 1 篇 chia-chong chen
  • 1 篇 arai masaaki
  • 1 篇 wang dong
  • 1 篇 luo chaomin
  • 1 篇 kynash yurii

语言

  • 16 篇 英文
  • 3 篇 其他
检索条件"主题词=Supervised Learning Method"
19 条 记 录,以下是1-10 订阅
排序:
Personal Thermal Comfort Model for Cyber-Physical Human Centric Systems using Incomplete supervised learning method  36
Personal Thermal Comfort Model for Cyber-Physical Human Cent...
收藏 引用
36th International Conference on Information Networking (ICOIN)
作者: Lim, Yuto Zhou, Chenmian Tan, Yasuo Fang, Yuan Singh, Manmeet Mahinderjit Japan Adv Inst Sci & Technol 1-1 Asahidai Nomi Ishikawa 9211292 Japan Dalian Polytech Univ Dalian 116034 Liaoning Peoples R China Univ Sains Malaysia Usm Penang 11800 Malaysia
A personal thermal comfort (PTC) model is a novel approach to predict the thermal sensation of an individual rather than a group of people. The relationship between the environmental and human factors of this model is... 详细信息
来源: 评论
Indirect Prediction of Spindle Rotation Error Through Vibration Signal Based on supervised Local Mean Decomposition Filter Fusion and Bi-LSTM Classification Network
收藏 引用
ASCE-ASME JOURNAL OF RISK AND UNCERTAINTY IN ENGINEERING SYSTEMS PART B-MECHANICAL ENGINEERING 2024年 第2期10卷 021102页
作者: Liang, Jianhong Wang, Liping Yu, Guang Wu, Jun Wang, Dong Lin, Song Tsinghua Univ Dept Mech Engn Beijing 100084 Peoples R China Southwest Univ Sci & Technol Coll Informat Engn Mianyang 621000 Peoples R China Southwest Univ Sci & Technol Coll Informat Engn Mianyang 621000 Peoples R China
Spindle rotation error directly correlates with the quality of mechanical processing. Currently, the error was mainly converted through measuring the distance information of standard component installed at the tool po... 详细信息
来源: 评论
Continuous quality control evaluation during manufacturing using supervised learning algorithm for Industry 4.0
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY 2023年 1-10页
作者: Shafiq, Muhammad Thakre, Kalpana Krishna, Kalluri Rama Robert, Noel Jeygar Kuruppath, Ashok Kumar, Devendra Qujing Normal Univ Sch Informat Engn Qujing Yunnan Peoples R China Marathwada Mitra Mandals Coll Engn Dept Comp Engn Pune India Vasavi Coll Engn A Dept Informat Technol Hyderabad India VIT Univ Sch Comp Sci & Engn Chennai Campus Chennai Tamil Nadu India New Horizon Coll Engn Dept Comp Sci & Engn Bengaluru 560103 India ABES Engn Coll Dept Comp Applicat Ghaziabad UP India
Smart industries use modern technologies such as machine learning and big data to maintain supply chain management and increase productivity but still the main challenge faced during quality control as this might affe... 详细信息
来源: 评论
supervised learning method and quality capability of process used in an optical transmission inspection of on-line nonwoven basis weight
收藏 引用
OPTICS COMMUNICATIONS 2012年 第8期285卷 2106-2112页
作者: Huang, Ding-Kuo Chen, Chi-Feng Natl Cent Univ Dept Mech Engn Jhongli 32054 Taiwan Taiwan Text Res Inst Dept Text Technol & Prod Dev Taipei 231 Taiwan Natl Cent Univ Inst Optomechatron Engn Jhongli 32054 Taiwan
The supervised learning method and quality capability of process used in an on-line optical transmission inspection system of the basis weight for nonwoven material are investigated. A near-infrared light transmission... 详细信息
来源: 评论
Which exogenous driver is informative in forecasting European carbon volatility: Bond, commodity, stock or uncertainty?
收藏 引用
ENERGY ECONOMICS 2023年 117卷
作者: Wang, Jiqian Guo, Xiaozhu Tan, Xueping Chevallier, Julien Ma, Feng Southwest Jiaotong Univ Sch Econ & Management Chengdu Peoples R China Serv Sci & Innovat Key Lab Sichuan Prov Chengdu Peoples R China Shanghai Jiao Tong Univ Sch Environm Sci & Engn Shanghai Peoples R China China Univ Min & Technol Sch Econ & Management Xuzhou Peoples R China IPAG Business Sch IPAG Lab 184 bd St Germain F-75006 Paris France Univ Paris 08 LED 2 rue Liberte F-93526 St Denis France
This study relies on 45 exogenous drivers to improve the accuracy in forecasting EUA volatility. Several popular linear and nonlinear predictive regressions, including individual factor analysis, the combination forec... 详细信息
来源: 评论
DEEP GROUPED NON-NEGATIVE MATRIX FACTORIZATION method FOR IMAGE DATA REPRESENTATION  20
DEEP GROUPED NON-NEGATIVE MATRIX FACTORIZATION METHOD FOR IM...
收藏 引用
20th International Conference on Machine learning and Cybernetics (ICMLC)
作者: Zhan, Zihao Chen, Wen-Sheng Pan, Binbin Chen, Bo Shenzhen Univ Coll Math & Stat Shenzhen Peoples R China Shenzhen Univ Guangdong Key Lab Media Secur Shenzhen Peoples R China Shenzhen Univ Shenzhen Key Lab Adv Machine Learning & Applicat Shenzhen Peoples R China
Non-negative matrix factorization (NMF) is an unsupervised learning method that can be exploited for parts-based image representation due to non-negativity constraints. However, singer-layer NMF cannot capture the lat... 详细信息
来源: 评论
Physics-guided deep neural network for structural damage identification
收藏 引用
OCEAN ENGINEERING 2022年 260卷
作者: Huang, Zhou Yin, Xinfeng Liu, Yang Changsha Univ Sci & Technol Sch Civil Engn Changsha 410114 Peoples R China
The physics-driven method via finite element model and the data-driven methods via supervised learning is commonly used in the analysis of structural damage identification. The finite element model can be susceptible ... 详细信息
来源: 评论
Motion control of unmanned underwater vehicles via deep imitation reinforcement learning algorithm
收藏 引用
IET INTELLIGENT TRANSPORT SYSTEMS 2020年 第7期14卷 764-774页
作者: Chu, Zhenzhong Sun, Bo Zhu, Daqi Zhang, Mingjun Luo, Chaomin Shanghai Maritime Univ Shanghai Engn Res Ctr Intelligent Maritime Search Shanghai 201306 Peoples R China Harbin Engn Univ Coll Mech & Elect Engn Harbin 150001 Peoples R China Mississippi State Univ Dept Elect & Comp Engn Mississippi State MS 39762 USA
In this study, a motion control algorithm based on deep imitation reinforcement learning is proposed for the unmanned underwater vehicles (UUVs). The algorithm is called imitation learning (IL) twin delay deep determi... 详细信息
来源: 评论
Research on learning mechanism designing for equilibrated bipolar spiking neural networks
收藏 引用
ARTIFICIAL INTELLIGENCE REVIEW 2020年 第7期53卷 5189-5215页
作者: Yang, Xu Lin, Jiajun Zheng, Wenhao Zhao, Jinfeng Ji, Mengyao Lei, Yunlin Chai, Zenghao Beijing Inst Technol Sch Comp Sci & Technol Beijing Peoples R China
Artificial Intelligence (AI) has become very popular due to both the increasing demands from applications and the booming of computer techniques. Spiking Neural Network (SNN), as the third generation of Artificial Neu... 详细信息
来源: 评论
SGD-Based Wiener Polynomial Approximation for Missing Data Recovery in Air Pollution Monitoring Dataset  15th
SGD-Based Wiener Polynomial Approximation for Missing Data R...
收藏 引用
15th International Work-Conference on Artificial Neural Networks (IWANN)
作者: Izonin, Ivan Ml, Michal Gregus Tkachenko, Roman Logoyda, Mykola Mishchuk, Oleksandra Kynash, Yurii Lviv Polytech Natl Univ Lvov Ukraine Comenius Univ Bratislava Slovakia
This paper describes the developed SGD-based Wiener polynomial approximation method for the missing data recovery of air pollution monitoring tasks. The main steps of algorithmic implementation of the method have been... 详细信息
来源: 评论