咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 6 篇 计算机科学与技术...
    • 3 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 系统科学

主题

  • 6 篇 supervised matri...
  • 1 篇 supervised netwo...
  • 1 篇 sparseness const...
  • 1 篇 natural image pa...
  • 1 篇 supervision
  • 1 篇 fast inference
  • 1 篇 supervised netwo...
  • 1 篇 sparse matrices
  • 1 篇 link
  • 1 篇 computer archite...
  • 1 篇 heterogeneous da...
  • 1 篇 joint subspace l...
  • 1 篇 link content con...
  • 1 篇 max-margin learn...
  • 1 篇 optimization
  • 1 篇 transfer functio...
  • 1 篇 nonnegative matr...
  • 1 篇 multimodal data
  • 1 篇 optimization cri...
  • 1 篇 large-scale netw...

机构

  • 2 篇 hefei univ techn...
  • 2 篇 univ cent florid...
  • 2 篇 univ illinois be...
  • 1 篇 daimler ag dept ...
  • 1 篇 northeastern uni...
  • 1 篇 jiangnan univ ji...
  • 1 篇 ibm corp tj wats...
  • 1 篇 ibm tj watson re...
  • 1 篇 northeastern uni...
  • 1 篇 arizona state un...
  • 1 篇 bhu indian inst ...
  • 1 篇 michigan state u...

作者

  • 2 篇 huang thomas s.
  • 2 篇 chang shiyu
  • 2 篇 wang meng
  • 2 篇 qi guo-jun
  • 2 篇 aggarwal charu c...
  • 2 篇 zhou jiayu
  • 1 篇 jiang min
  • 1 篇 palm guenther
  • 1 篇 kong jun
  • 1 篇 kong yu
  • 1 篇 fu yun
  • 1 篇 shukla k. k.
  • 1 篇 thom markus
  • 1 篇 verma mridula
  • 1 篇 schweiger roland
  • 1 篇 gaurav ramashish
  • 1 篇 yang yingzhen
  • 1 篇 liu tianshan

语言

  • 6 篇 英文
检索条件"主题词=Supervised Matrix Factorization"
6 条 记 录,以下是1-10 订阅
排序:
supervised matrix factorization with Sparseness Constraints and Fast Inference
Supervised Matrix Factorization with Sparseness Constraints ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Thom, Markus Schweiger, Roland Palm, Guenther Daimler AG Dept Environm Percept GR PAP Ulm Germany
Non-negative matrix factorization is a technique for decomposing large data sets into bases and code words, where all entries of the occurring matrices are non-negative. A recently proposed technique also incorporates... 详细信息
来源: 评论
Informed Multimodal Latent Subspace Learning via supervised matrix factorization  16
Informed Multimodal Latent Subspace Learning via Supervised ...
收藏 引用
10th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP)
作者: Gaurav, Ramashish Verma, Mridula Shukla, K. K. BHU Indian Inst Technol Varanasi Uttar Pradesh India
matrix factorization technique has been widely used as a popular method to learn a joint latent-compact subspace, when multiple views or modals of objects (belonging to single-domain or multiple-domain) are available.... 详细信息
来源: 评论
Large-scale supervised similarity learning in networks
收藏 引用
KNOWLEDGE AND INFORMATION SYSTEMS 2016年 第3期48卷 707-740页
作者: Chang, Shiyu Qi, Guo-Jun Yang, Yingzhen Aggarwal, Charu C. Zhou, Jiayu Wang, Meng Huang, Thomas S. Univ Illinois Beckman Inst Urbana IL 61801 USA Univ Cent Florida Orlando FL 32816 USA IBM TJ Watson Res Ctr Yorktown Hts NY 10598 USA Michigan State Univ E Lansing MI 48824 USA Hefei Univ Technol Hefei 230009 Anhui Peoples R China
The problem of similarity learning is relevant to many data mining applications, such as recommender systems, classification, and retrieval. This problem is particularly challenging in the context of networks, which c... 详细信息
来源: 评论
Collaborative multimodal feature learning for RGB-D action recognition
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 2019年 59卷 537-549页
作者: Kong, Jun Liu, Tianshan Jiang, Min Jiangnan Univ Jiangsu Prov Engn Lab Pattern Recognit & Computat Wuxi 214122 Peoples R China
The emergence of cost-effective depth sensors opens up a new dimension for RGB-D based human action recognition. In this paper, we propose a collaborative multimodal feature learning (CMFL) model for human action reco... 详细信息
来源: 评论
Discriminative Relational Representation Learning for RGB-D Action Recognition
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2016年 第6期25卷 2856-2865页
作者: Kong, Yu Fu, Yun Northeastern Univ Dept Elect & Comp Engn Boston MA 02115 USA Northeastern Univ Coll Comp & Informat Sci Dept Elect & Comp Engn Boston MA 02115 USA
This paper addresses the problem of recognizing human actions from RGB-D videos. A discriminative relational feature learning method is proposed for fusing heterogeneous RGB and depth modalities, and classifying the a... 详细信息
来源: 评论
Factorized Similarity Learning in Networks  14
Factorized Similarity Learning in Networks
收藏 引用
14th IEEE International Conference on Data Mining (IEEE ICDM)
作者: Chang, Shiyu Qi, Guo-Jun Aggarwal, Charu C. Zhou, Jiayu Wang, Meng Huang, Thomas S. Univ Illinois Beckman Inst Urbana IL 61801 USA Univ Cent Florida Orlando FL 32816 USA IBM Corp TJ Watson Res Ctr Yorktown Hts NY 10598 USA Arizona State Univ Tempe AZ 85281 USA Hefei Univ Technol Hefei 230009 Anhui Peoples R China
The problem of similarity learning is relevant to many data mining applications, such as recommender systems, classification, and retrieval. This problem is particularly challenging in the context of networks, which c... 详细信息
来源: 评论