咨询与建议

限定检索结果

文献类型

  • 78 篇 期刊文献
  • 37 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 116 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 103 篇 工学
    • 55 篇 计算机科学与技术...
    • 21 篇 控制科学与工程
    • 17 篇 电气工程
    • 12 篇 环境科学与工程(可...
    • 11 篇 软件工程
    • 9 篇 机械工程
    • 8 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 5 篇 信息与通信工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 材料科学与工程(可...
    • 4 篇 生物医学工程(可授...
    • 4 篇 安全科学与工程
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 测绘科学与技术
    • 3 篇 交通运输工程
  • 42 篇 理学
    • 13 篇 化学
    • 10 篇 数学
    • 10 篇 生物学
    • 4 篇 物理学
    • 4 篇 地球物理学
    • 4 篇 统计学(可授理学、...
    • 3 篇 地质学
    • 3 篇 系统科学
  • 22 篇 医学
    • 10 篇 临床医学
    • 7 篇 基础医学(可授医学...
    • 5 篇 特种医学
    • 4 篇 药学(可授医学、理...
  • 20 篇 管理学
    • 20 篇 管理科学与工程(可...
  • 2 篇 经济学
  • 2 篇 农学
  • 1 篇 法学

主题

  • 116 篇 support vector c...
  • 12 篇 support vector r...
  • 11 篇 machine learning
  • 5 篇 support vector m...
  • 4 篇 structure-activi...
  • 4 篇 support vector m...
  • 3 篇 logistic regress...
  • 3 篇 pattern recognit...
  • 3 篇 remote sensing
  • 3 篇 second-order con...
  • 3 篇 self-training
  • 3 篇 classification
  • 3 篇 artificial neura...
  • 2 篇 electrical machi...
  • 2 篇 prediction risk
  • 2 篇 blued dataset
  • 2 篇 random forest
  • 2 篇 selex
  • 2 篇 aptamer
  • 2 篇 semi-supervised ...

机构

  • 2 篇 hunan inst engn ...
  • 2 篇 school of mechan...
  • 2 篇 beijing inst tec...
  • 2 篇 univ diego porta...
  • 2 篇 college of scien...
  • 2 篇 tech univ denmar...
  • 2 篇 univ chinese aca...
  • 2 篇 hunan univ coll ...
  • 1 篇 univ saarland de...
  • 1 篇 technol educ ins...
  • 1 篇 kunming univ sci...
  • 1 篇 jilin univ coll ...
  • 1 篇 school of physic...
  • 1 篇 college of food ...
  • 1 篇 uppsala univ dep...
  • 1 篇 univ mosul coll ...
  • 1 篇 nanjing med univ...
  • 1 篇 east china norma...
  • 1 篇 harbin engn univ...
  • 1 篇 helsinki univ te...

作者

  • 3 篇 carrasco miguel
  • 3 篇 maldonado sebast...
  • 3 篇 lopez julio
  • 2 篇 hartmaier alexan...
  • 2 篇 yang xiaohai
  • 2 篇 liu bo
  • 2 篇 yingjie tian
  • 2 篇 mu-chun zhou
  • 2 篇 chan raymond c. ...
  • 2 篇 yu xinliang
  • 2 篇 ekins sean
  • 2 篇 francesca maridi...
  • 2 篇 varagnolo damian...
  • 2 篇 arkkio a
  • 2 篇 arratia argimiro
  • 2 篇 belanche lluis a...
  • 2 篇 fabregues luis
  • 2 篇 zheng xiao
  • 2 篇 negrea m
  • 2 篇 yu ruqin

语言

  • 109 篇 英文
  • 4 篇 其他
  • 2 篇 中文
  • 1 篇 德文
检索条件"主题词=Support Vector Classification"
116 条 记 录,以下是1-10 订阅
排序:
support vector classification for fault diagnostics of an electrical machine  6
Support vector classification for fault diagnostics of an el...
收藏 引用
6th International Conference on Signal Processing
作者: Pöyhönen, S Negrea, M Arkkio, A Hyötyniemi, H Koivo, H Helsinki Univ Technol Lab Control Engn Helsinki 02015 Finland
support vector classification (SVC) is applied to fault diagnostics of an electrical machine. Numerical magnetic field analysis is used to provide virtual measurement data from healthy and faulty operation of an elect... 详细信息
来源: 评论
A Linearly Convergent Linear-Time First-Order Algorithm for support vector classification with a Core Set Result
收藏 引用
INFORMS JOURNAL ON COMPUTING 2011年 第3期23卷 377-391页
作者: Kumar, Piyush Yildirim, E. Alper Florida State Univ Dept Comp Sci Tallahassee FL 32306 USA Bilkent Univ Dept Ind Engn TR-06800 Ankara Turkey
We present a simple first-order approximation algorithm for the support vector classification problem. Given a pair of linearly separable data sets and epsilon is an element of(0, 1), the proposed algorithm computes a... 详细信息
来源: 评论
A semismooth Newton method for support vector classification and regression
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2019年 第2期73卷 477-508页
作者: Yin, Juan Li, Qingna Beijing Inst Technol Sch Math & Stat Beijing 100081 Peoples R China Beijing Inst Technol Beijing Key Lab MCAACI Sch Math & Stat Beijing 100081 Peoples R China
support vector machine is an important and fundamental technique in machine learning. In this paper, we apply a semismooth Newton method to solve two typical SVM models: the L2-loss SVC model and the E-L2-loss SVR mod... 详细信息
来源: 评论
Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis
收藏 引用
NEUROCOMPUTING 2015年 168卷 119-127页
作者: Li, Chuan Sanchez, Rene-Vinicio Zurita, Grover Cerrada, Vlariela Cabrera, Diego Vasquez, Rafael E. Chongqing Technol & Business Univ Res Ctr Syst Hlth Maintenance Chongqing 400067 Peoples R China Univ Politecn Salesiana Dept Mech Engn Cuenca Ecuador Univ Pontificia Bolivariana Dept Mech Engn Medellin Colombia
Gearboxes are crucial transmission components in mechanical systems. Fault diagnosis is an important tool to maintain gearboxes in healthy conditions. It is challenging to recognize fault existences and, if any, failu... 详细信息
来源: 评论
Optimizing machine learning yield functions using query-by-committee for support vector classification with a dynamic stopping criterion
收藏 引用
COMPUTATIONAL MECHANICS 2024年 第2期74卷 447-466页
作者: Shoghi, Ronak Morand, Lukas Helm, Dirk Hartmaier, Alexander Interdisciplinary Ctr Adv Mat Simulat ICAMS Bochum Germany Fraunhofer Inst Mech Mat IWM Freiburg Germany
In the field of materials engineering, the accurate prediction of material behavior under various loading conditions is crucial. Machine Learning (ML) methods have emerged as promising tools for generating constitutiv... 详细信息
来源: 评论
Bilevel hyperparameter optimization for support vector classification: theoretical analysis and a solution method
收藏 引用
MATHEMATICAL METHODS OF OPERATIONS RESEARCH 2022年 第3期96卷 315-350页
作者: Li, Qingna Li, Zhen Zemkoho, Alain Beijing Inst Technol Sch Math & Stat Beijing Key Lab MCAACl Key Lab Math Theory & Computat Informat Secur Beijing 100081 Peoples R China Beijing Inst Technol Sch Math & Stat Beijing 100081 Peoples R China Univ Southampton Sch Math Sci Southampton SO17 1BJ Hants England
support vector classification (SVC) is a classical and well-performed learning method for classification problems. A regularization parameter, which significantly affects the classification performance, has to be chos... 详细信息
来源: 评论
Prediction of pipe failures in water supply networks using logistic regression and support vector classification
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2020年 196卷 106754-000页
作者: Robles-Velasco, Alicia Cortes, Pablo Munuzuri, Jesus Onieva, Luis Univ Seville ETSI Dept Org Ind & Gest Empresas 2 C Camino de los Descubrimientos S-N Seville 41092 Spain Univ Seville Catedra Agua EMASESA Seville Spain
Companies in charge of water supply networks are making a huge effort to optimally plan the annual replacements of pipes. This would save costs, enable a higher quality of service and a sustainable management of infra... 详细信息
来源: 评论
Predicting anti-HIV-1 activities of HEPT-analog compounds by using support vector classification
收藏 引用
QSAR & COMBINATORIAL SCIENCE 2005年 第9期24卷 1021-1025页
作者: Lu, WC Dong, N Náray-Szabó, G Shanghai Univ Coll Sci Dept Chem Shanghai 200444 Peoples R China Eotvos Lorand Univ Dept Theoret Chem H-1518 Budapest Hungary Eotvos Lorand Univ Hungarian Acad Sci Prot Modelling Grp H-1518 Budapest Hungary
The support vector classification (SVC), as a novel approach, was employed to make a distinction within a class of non-nucleoside reverse transcriptase inhibitors. 1-[2-hydroxyethoxy) methyl]-6-(phenyl thio)-thymine (... 详细信息
来源: 评论
A neural network method for solving support vector classification problems
收藏 引用
NEUROCOMPUTING 2015年 152卷 369-376页
作者: Nazemi, Alireza Dehghan, Mehran Univ Shahrood Sch Math Sci Dept Math Shahrood Iran
This paper presents a recurrent neural network to support vector machine (SVM) learning in pattern classification arising widespread applications in a variety of setting. The SVM learning problem in classification is ... 详细信息
来源: 评论
Geological Domaining with Unsupervised Clustering and Ensemble support vector classification
收藏 引用
MINING METALLURGY & EXPLORATION 2023年 第6期40卷 2537-2549页
作者: Koruk, Kasimcan Ortiz, Julian M. Gen Directorate Mineral Res & Explorat Dept Feasibil Studies Ankara Turkiye Queens Univ Robert M Buchan Dept Min Kingston ON K7L 3N6 Canada
Building a geological model is important in resource estimation, as it defines the extent of domains for estimation. Geological models are built by assigning a domain to the samples, based on logging of different feat... 详细信息
来源: 评论