咨询与建议

限定检索结果

文献类型

  • 260 篇 期刊文献
  • 163 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 424 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 409 篇 工学
    • 201 篇 计算机科学与技术...
    • 117 篇 电气工程
    • 100 篇 控制科学与工程
    • 54 篇 仪器科学与技术
    • 44 篇 机械工程
    • 31 篇 软件工程
    • 27 篇 信息与通信工程
    • 23 篇 化学工程与技术
    • 14 篇 测绘科学与技术
    • 11 篇 动力工程及工程热...
    • 10 篇 石油与天然气工程
    • 7 篇 航空宇航科学与技...
    • 7 篇 环境科学与工程(可...
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 6 篇 食品科学与工程(可...
    • 6 篇 公安技术
    • 5 篇 光学工程
    • 5 篇 交通运输工程
  • 82 篇 理学
    • 27 篇 数学
    • 25 篇 物理学
    • 16 篇 化学
    • 16 篇 系统科学
    • 8 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 7 篇 地球物理学
  • 73 篇 管理学
    • 72 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 19 篇 医学
    • 12 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 6 篇 农学
  • 5 篇 经济学

主题

  • 424 篇 support vector d...
  • 54 篇 one-class classi...
  • 34 篇 anomaly detectio...
  • 27 篇 fault detection
  • 27 篇 novelty detectio...
  • 19 篇 support vector m...
  • 16 篇 outlier detectio...
  • 16 篇 fault diagnosis
  • 15 篇 machine learning
  • 13 篇 support vector m...
  • 12 篇 deep learning
  • 12 篇 process monitori...
  • 11 篇 classification
  • 10 篇 feature extracti...
  • 10 篇 feature selectio...
  • 8 篇 condition monito...
  • 8 篇 kernel method
  • 8 篇 mutual informati...
  • 7 篇 rolling bearing
  • 7 篇 principal compon...

机构

  • 4 篇 tsinghua univ de...
  • 4 篇 china univ petr ...
  • 4 篇 univ sci & techn...
  • 4 篇 jiangnan univ ke...
  • 3 篇 univ canberra fa...
  • 3 篇 soochow univ sch...
  • 3 篇 motorola inc mot...
  • 3 篇 miami univ dept ...
  • 3 篇 qingdao univ col...
  • 3 篇 east china univ ...
  • 3 篇 e china univ sci...
  • 3 篇 shenyang institu...
  • 3 篇 chung yuan chris...
  • 3 篇 texas a&m univ d...
  • 3 篇 henan polytech b...
  • 3 篇 univ s alabama d...
  • 3 篇 jiangsu univ sch...
  • 3 篇 dalian univ tech...
  • 3 篇 liaoning normal ...
  • 2 篇 queens univ belf...

作者

  • 10 篇 yan xuefeng
  • 7 篇 deng xiaogang
  • 7 篇 xiao huaitie
  • 7 篇 iosifidis alexan...
  • 6 篇 dat tran
  • 6 篇 ge zhiqiang
  • 6 篇 yazdi hadi sadog...
  • 6 篇 jiang qingchao
  • 5 篇 sohrab fahad
  • 5 篇 raitoharju jenni
  • 5 篇 guo yu
  • 5 篇 song zhihuan
  • 4 篇 ma wanli
  • 4 篇 liu bo
  • 4 篇 monsefi reza
  • 4 篇 li min
  • 4 篇 gryllias konstan...
  • 4 篇 gabbouj moncef
  • 4 篇 huang min
  • 4 篇 xiao yanshan

语言

  • 400 篇 英文
  • 19 篇 其他
  • 4 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 土耳其文
检索条件"主题词=Support Vector Data Description"
424 条 记 录,以下是1-10 订阅
排序:
support vector data description
收藏 引用
MACHINE LEARNING 2004年 第1期54卷 45-66页
作者: Tax, DMJ Duin, RPW Delft Univ Technol Fac Appl Phys Pattern Recognit Grp NL-2628 CJ Delft Netherlands
data domain description concerns the characterization of a data set. A good description covers all target data but includes no superfluous space. The boundary of a dataset can be used to detect novel data or outliers.... 详细信息
来源: 评论
Anomaly detection for high-speed machining using hybrid regularized support vector data description
收藏 引用
ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING 2025年 94卷
作者: Ma, Zhipeng Zhao, Ming Dai, Xuebin Chen, Yang Zhejiang Univ State Key Lab Fluid Power & Mechatron Syst Hangzhou 310027 Peoples R China Zhejiang Univ Sch Mech Engn Hangzhou 310027 Peoples R China Xi An Jiao Tong Univ State Key Lab Mfg Syst Engn Xian 710049 Peoples R China Ujoin Tech Shanghai Co Ltd Shanghai 201199 Peoples R China
Process monitoring in high-speed machining (HSM) is essential to guarantee product quality and improve manufacturing efficiency. Nevertheless, the data acquired from practical machining processes are completely unlabe... 详细信息
来源: 评论
Boundary sample extraction support vector data description: a novel anomaly detection method for large-scale data
收藏 引用
MEASUREMENT SCIENCE AND TECHNOLOGY 2025年 第2期36卷 026012-026012页
作者: Wang, Xiaofei Chen, Yongzhan Xu, Fenglei Gao, Yanli Wang, Yuanxin Qiao, Yuchuan Dai, Haomin Wang, Qiang Naval Aeronaut Univ Dept Control Sci & Engn Qingdao Branch Qingdao 266041 Peoples R China Fudan Univ Inst Sci & Technol Brain Inspired Intelligence Shanghai 200433 Peoples R China
support vector data description (SVDD) has been effectively used in many anomaly detection problems. Equipped with kernel functions, its training complexity grows exponentially with the increase in training data, whic... 详细信息
来源: 评论
support vector data description model to map urban extent from National Polar-Orbiting Partnership Satellite-Visible Infrared Imaging Radiometer Suite nightlights and normalized difference vegetation index
收藏 引用
JOURNAL OF APPLIED REMOTE SENSING 2016年 第2期10卷 026012-1-026012-20页
作者: Zhang, Jinshui Zhou, Zhongwei Shuai, Guanyuan Liu, Hongli Beijing Normal Univ State Key Lab Earth Surface Processes & Resource Beijing 100875 Peoples R China Beijing Normal Univ Coll Resources Sci & Technol Beijing 100875 Peoples R China Michigan State Univ Dept Geol Sci E Lansing MI 48824 USA
We explored a one-class classifier, the support vector data description (SVDD), using the Suomi National Polar-Orbiting Partnership Satellite-Visible Infrared Imaging Radiometer Suite and normalized difference vegetat... 详细信息
来源: 评论
support vector data description using privileged information
收藏 引用
ELECTRONICS LETTERS 2015年 第14期51卷 1075-+页
作者: Zhang, Wenbo Xidian Univ Sch Elect Engn Xian 710071 Peoples R China
support vector data description (SVDD) is a data description method which gives the target data set a hypersphere-shaped description and can be used for one-class classification or outlier detection. To further improv... 详细信息
来源: 评论
support vector data description for detecting the air-ground interface in ground penetrating radar signals
Support vector data description for detecting the air-ground...
收藏 引用
Conference on Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XVI
作者: Wood, Joshua Wilson, Joseph Univ Florida CISE Gainesville FL 32611 USA
In using GPR images for landmine detection it is often useful to identify the air-ground interface in the GRP signal for alignment purposes. A common simple technique for doing this is to assume that the highest retur... 详细信息
来源: 评论
support vector data description based Multivariate Cumulative Sum Control Chart
Support Vector Data Description based Multivariate Cumulativ...
收藏 引用
International Conference on Advanced Design and Manufacturing Engineering (ADME 2011)
作者: He, Shuguang Zhang, Chunyan Tianjin Univ Sch Management Tianjin 300072 Peoples R China
A SVDD (support vector data description) based MCUSUM (Multivariate Cumulative Sum) chart is proposed and referred as S-MCUSUM chart, which has an advantage of distribution free. Numerical experiments on the performan... 详细信息
来源: 评论
A fast iterative algorithm for support vector data description
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2019年 第5期10卷 1173-1187页
作者: Zheng, Songfeng Missouri State Univ Dept Math Springfield MO 65897 USA
support vector data description (SVDD) is a well known model for pattern analysis when only positive examples are reliable. SVDD is usually trained by solving a quadratic programming problem, which is time consuming. ... 详细信息
来源: 评论
A novel framework based on two-stage multi-view feature optimization and improved support vector data description for aeroengine bearing early fault detection
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2024年 245卷
作者: Hou, Zhaoguo Wang, Huawei Yue, Yubin Xiong, Minglan Zhang, Wenxuan Nanjing Univ Aeronaut & Astronaut Coll Civil Aviat Nanjing 211106 Peoples R China
Early fault detection is crucial to avoid catastrophic flight accidents caused by unplanned downtime of equipment. Aimed at the shortcomings of feature selection and early fault detection, this paper proposes a method... 详细信息
来源: 评论
Kernel parameter variation-based selective ensemble support vector data description for oil spill detection on the ocean via hyperspectral imaging
收藏 引用
JOURNAL OF APPLIED REMOTE SENSING 2017年 第3期11卷
作者: Uslu, Faruk Sukru Yildiz Tech Univ Elect & Commun Engn Dept Istanbul Turkey
Oil spills on the ocean surface cause serious environmental, political, and economic problems. Therefore, these catastrophic threats to marine ecosystems require detection and monitoring. Hyperspectral sensors are pow... 详细信息
来源: 评论