咨询与建议

限定检索结果

文献类型

  • 260 篇 期刊文献
  • 163 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 424 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 409 篇 工学
    • 201 篇 计算机科学与技术...
    • 117 篇 电气工程
    • 100 篇 控制科学与工程
    • 54 篇 仪器科学与技术
    • 44 篇 机械工程
    • 31 篇 软件工程
    • 27 篇 信息与通信工程
    • 23 篇 化学工程与技术
    • 14 篇 测绘科学与技术
    • 11 篇 动力工程及工程热...
    • 10 篇 石油与天然气工程
    • 7 篇 航空宇航科学与技...
    • 7 篇 环境科学与工程(可...
    • 6 篇 力学(可授工学、理...
    • 6 篇 土木工程
    • 6 篇 食品科学与工程(可...
    • 6 篇 公安技术
    • 5 篇 光学工程
    • 5 篇 交通运输工程
  • 82 篇 理学
    • 27 篇 数学
    • 25 篇 物理学
    • 16 篇 化学
    • 16 篇 系统科学
    • 8 篇 生物学
    • 8 篇 统计学(可授理学、...
    • 7 篇 地球物理学
  • 73 篇 管理学
    • 72 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 19 篇 医学
    • 12 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 6 篇 农学
  • 5 篇 经济学

主题

  • 424 篇 support vector d...
  • 54 篇 one-class classi...
  • 34 篇 anomaly detectio...
  • 27 篇 fault detection
  • 27 篇 novelty detectio...
  • 19 篇 support vector m...
  • 16 篇 outlier detectio...
  • 16 篇 fault diagnosis
  • 15 篇 machine learning
  • 13 篇 support vector m...
  • 12 篇 deep learning
  • 12 篇 process monitori...
  • 11 篇 classification
  • 10 篇 feature extracti...
  • 10 篇 feature selectio...
  • 8 篇 condition monito...
  • 8 篇 kernel method
  • 8 篇 mutual informati...
  • 7 篇 rolling bearing
  • 7 篇 principal compon...

机构

  • 4 篇 tsinghua univ de...
  • 4 篇 china univ petr ...
  • 4 篇 univ sci & techn...
  • 4 篇 jiangnan univ ke...
  • 3 篇 univ canberra fa...
  • 3 篇 soochow univ sch...
  • 3 篇 motorola inc mot...
  • 3 篇 miami univ dept ...
  • 3 篇 qingdao univ col...
  • 3 篇 east china univ ...
  • 3 篇 e china univ sci...
  • 3 篇 shenyang institu...
  • 3 篇 chung yuan chris...
  • 3 篇 texas a&m univ d...
  • 3 篇 henan polytech b...
  • 3 篇 univ s alabama d...
  • 3 篇 jiangsu univ sch...
  • 3 篇 dalian univ tech...
  • 3 篇 liaoning normal ...
  • 2 篇 queens univ belf...

作者

  • 10 篇 yan xuefeng
  • 7 篇 deng xiaogang
  • 7 篇 xiao huaitie
  • 7 篇 iosifidis alexan...
  • 6 篇 dat tran
  • 6 篇 ge zhiqiang
  • 6 篇 yazdi hadi sadog...
  • 6 篇 jiang qingchao
  • 5 篇 sohrab fahad
  • 5 篇 raitoharju jenni
  • 5 篇 guo yu
  • 5 篇 song zhihuan
  • 4 篇 ma wanli
  • 4 篇 liu bo
  • 4 篇 monsefi reza
  • 4 篇 li min
  • 4 篇 gryllias konstan...
  • 4 篇 gabbouj moncef
  • 4 篇 huang min
  • 4 篇 xiao yanshan

语言

  • 400 篇 英文
  • 19 篇 其他
  • 4 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 土耳其文
检索条件"主题词=Support Vector Data Description"
424 条 记 录,以下是11-20 订阅
排序:
Edge-pixels-based support vector data description for specific land-cover distribution mapping
收藏 引用
JOURNAL OF APPLIED REMOTE SENSING 2015年 第1期9卷 096034-1-096034-20页
作者: Shuai, Guanyuan Zhang, Jinshui Deng, Lei Zhu, Xiufang Beijing Normal Univ Coll Resources Sci & Technol State Key Lab Earth Surface Proc & Resource Ecol Beijing 100875 Peoples R China Capital Normal Univ Coll Resource Environm & Tourism Beijing 100048 Peoples R China
An edge-pixels-based support vector data description (EPSVDD) method has been developed for improving one-class classification accuracy. The proposed method was validated in two experiments: a simulated experiment and... 详细信息
来源: 评论
Remaining useful life prediction of industrial robot RV reducer with multiple deep networks and multicore support vector data description
收藏 引用
JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY 2024年 第8期38卷 4037-4051页
作者: Ren, Guoai Wang, Zhihai Liu, Xiaoqin Song, Feng Kunming Univ Sci Technol Fac Mech Elect Engn Kunming 650500 Yunnan Peoples R China Kunming Univ Sci Technol Key Lab Adv Equipment Intelligent Mfg Technol Yun Kunming 650500 Yunnan Peoples R China
The remaining useful life prediction of Industrial robot RV reducer is challenging due to the strong redundancy, unstable degradation initiation point, and environmental interference that may obscure the key state inf... 详细信息
来源: 评论
A Density-focused support vector data description Method
收藏 引用
QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL 2014年 第6期30卷 879-890页
作者: Phaladiganon, Poovich Kim, Seoung Bum Chen, Victoria C. P. Univ Texas Arlington Dept Ind & Mfg Syst Engn Arlington TX 76019 USA Korea Univ Sch Ind Management Engn Seoul South Korea
In novelty detection, support vector data description (SVDD) is a one-class classification technique that constructs a boundary to differentiate novel from normal patterns. However, boundaries constructed by SVDD do n... 详细信息
来源: 评论
A new support vector data description method for machinery fault diagnosis with unbalanced datasets
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2016年 64卷 239-246页
作者: Duan, Lixiang Xie, Mengyun Bai, Tangbo Wang, Jinjiang China Univ Petr Sch Mech & Transportat Engn Beijing 102249 Peoples R China
In machinery fault diagnosis area, the obtained data samples under faulty conditions are usually far less than those under normal condition, resulting in unbalanced dataset issue. The commonly used machine learning te... 详细信息
来源: 评论
Weighted support vector data description based on chaotic bat algorithm
收藏 引用
APPLIED SOFT COMPUTING 2017年 60卷 540-551页
作者: Hamidzadeh, Javad Sadeghi, Reza Namaei, Neda Sadjad Univ Technol Fac Comp Engn & Informat Technol Mashhad Iran Imam Reza Int Univ Dept Comp Engn Mashhad Iran
support vector data description (SVDD) is a support vector based learning algorithm for anomaly detection. In this method, the target is to form a boundary around the normalcy data by building a hyper-sphere. To gain ... 详细信息
来源: 评论
Dynamic hypersphere based support vector data description for batch process monitoring
收藏 引用
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS 2018年 172卷 17-32页
作者: Wang, Jianlin Liu, Weimin Qiu, Kepeng Yu, Tao Zhao, Liqiang Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 100029 Peoples R China
support vector data description (SVDD) is an efficient monitoring method that captures the spherically shaped boundary around the normal batch data and sets the control limit related to support vectors (SVs) for onlin... 详细信息
来源: 评论
Towards fast and parameter-independent support vector data description for image and video segmentation
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2019年 第0期128卷 271-286页
作者: Slimene, Alya Zagrouba, Ezzeddine Univ Tunis El Manar Inst Super Informat Lab Rech Informat Modelisat & Traitement Vde Info Tunis Tunisia
Machine learning has become a pillar of today's expert and intelligent systems where a special attention has been drawn to unsupervised methods. support vector data description is one of the most interesting metho... 详细信息
来源: 评论
Using a dynamically selective support vector data description model to discover novelties in the control system of electric arc furnace
收藏 引用
MEASUREMENT & CONTROL 2020年 第7-8期53卷 1049-1058页
作者: Zhang, Jiong Wang, Yue Li, Qian Wang, Biao Shandong Univ Sch Mech Engn Jinan Peoples R China Shandong Inst Commerce & Technol Sch Informat Jinan Peoples R China Liaoning Vocat Coll Ecol Engn Dept Fundamental Teaching Shenyang Peoples R China Shenyang Med Coll Sch Med Informat & Engn Shenyang Peoples R China Shenyang Aerosp Univ Sch Automat Shenyang 110136 Peoples R China
As increasing data-driven control strategies are applied in electric arc furnace systems, the problem of novelty detection has drawn more attentions than before. The presence of outliers should be the main obstacle in... 详细信息
来源: 评论
Multi-Block Fault Detection for Plant-Wide Dynamic Processes Based on Fault Sensitive Slow Features and support vector data description
收藏 引用
IEEE ACCESS 2020年 8卷 120737-120745页
作者: Zhai, Chao Sheng, Xiaochen Xiong, Weili Jiangnan Univ Minist Educ Key Lab Adv Proc Control Light Ind Wuxi 214122 Jiangsu Peoples R China
This study proposes a multi-block fault detection method based on fault-sensitive slow features for large-scale dynamic industrial processes. Firstly, slow feature analysis (SFA) can effectively extract the process dy... 详细信息
来源: 评论
Multi-mode process monitoring based on a novel weighted local standardization strategy and support vector data description
收藏 引用
Journal of Central South University 2016年 第11期23卷 2896-2905页
作者: 赵付洲 宋冰 侍洪波 Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education(East China University of Science and Technology) Shanghai 200237China
There are multiple operating modes in the real industrial process, and the collected data follow the complex multimodal distribution, so most traditional process monitoring methods are no longer applicable because the... 详细信息
来源: 评论