咨询与建议

限定检索结果

文献类型

  • 123 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 130 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 108 篇 工学
    • 66 篇 生物工程
    • 10 篇 计算机科学与技术...
    • 8 篇 电气工程
    • 8 篇 环境科学与工程(可...
    • 5 篇 水利工程
    • 4 篇 材料科学与工程(可...
    • 4 篇 控制科学与工程
    • 4 篇 交通运输工程
    • 3 篇 信息与通信工程
    • 3 篇 化学工程与技术
    • 3 篇 安全科学与工程
    • 2 篇 土木工程
    • 2 篇 石油与天然气工程
    • 2 篇 生物医学工程(可授...
  • 86 篇 理学
    • 74 篇 生物学
    • 6 篇 化学
    • 3 篇 地球物理学
    • 2 篇 大气科学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 地质学
    • 1 篇 生态学
  • 71 篇 医学
    • 10 篇 基础医学(可授医学...
    • 5 篇 临床医学
    • 4 篇 公共卫生与预防医...
  • 12 篇 农学
    • 2 篇 作物学
  • 9 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 2 篇 公共管理
  • 3 篇 法学
    • 3 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 130 篇 support vector m...
  • 63 篇 support vector m...
  • 10 篇 random forest mo...
  • 10 篇 matthews correla...
  • 10 篇 amino acid compo...
  • 6 篇 support vector m...
  • 5 篇 evolutionary inf...
  • 5 篇 random forest
  • 5 篇 support vector m...
  • 5 篇 radial basis fun...
  • 4 篇 support vector m...
  • 4 篇 power engineerin...
  • 4 篇 machine learning
  • 4 篇 feature selectio...
  • 3 篇 fault diagnosis
  • 3 篇 receiver operati...
  • 3 篇 area under curve
  • 3 篇 protein data ban...
  • 3 篇 accessible surfa...
  • 3 篇 particle swarm o...

机构

  • 8 篇 inst microbial t...
  • 4 篇 inst microbial t...
  • 2 篇 bioinformat ctr ...
  • 2 篇 panjab univ dept...
  • 2 篇 sichuan normal u...
  • 2 篇 chinese acad sci...
  • 2 篇 inha univ sch co...
  • 2 篇 natl univ singap...
  • 1 篇 natl univ singap...
  • 1 篇 xidian univ sch ...
  • 1 篇 south china univ...
  • 1 篇 nanyang technol ...
  • 1 篇 ntt communicatio...
  • 1 篇 bulgarian acad s...
  • 1 篇 weill cornell me...
  • 1 篇 acad sinica inst...
  • 1 篇 univ amsterdam i...
  • 1 篇 univ elect sci &...
  • 1 篇 univ colorado sc...
  • 1 篇 xuzhou med univ ...

作者

  • 14 篇 raghava gajendra...
  • 4 篇 mishra nitish k.
  • 3 篇 lee tzong-yi
  • 3 篇 yu wei
  • 3 篇 han kyungsook
  • 3 篇 chauhan jagat s.
  • 2 篇 kaundal rakesh
  • 2 篇 huang kai-yao
  • 2 篇 steyerberg ewout...
  • 2 篇 gwinn marta
  • 2 篇 garg aarti
  • 2 篇 dai hong-jie
  • 2 篇 lata sneh
  • 2 篇 sugaya nobuyoshi
  • 2 篇 chang tzu-hao
  • 2 篇 panwar bharat
  • 2 篇 khoury muin j.
  • 2 篇 liu tiebin
  • 2 篇 ahmed firoz
  • 2 篇 peng li

语言

  • 128 篇 英文
  • 2 篇 其他
检索条件"主题词=Support Vector Machine Model"
130 条 记 录,以下是51-60 订阅
排序:
Prediction of anti-inflammatory proteins/peptides: an insilico approach
收藏 引用
JOURNAL OF TRANSLATIONAL MEDICINE 2017年 第1期15卷 1-11页
作者: Gupta, Sudheer Sharma, Ashok K. Shastri, Vibhuti Madhu, Midhun K. Sharma, Vineet K. Indian Inst Sci Educ & Res Bhopal Dept Biol Sci Metagen & Syst Biol Grp Bhopal India
Background: The current therapy for inflammatory and autoimmune disorders involves the use of nonspecific anti-inflammatory drugs and other immunosuppressant, which are often accompanied with potential side effects. A... 详细信息
来源: 评论
Advanced method for short-term wind power prediction with multiple observation points using extreme learning machines
收藏 引用
JOURNAL OF ENGINEERING-JOE 2018年 第1期2018卷 29-38页
作者: Mahmoud, Tawfek Dong, Zhao Yang Ma, Jin Univ Sydney Sch Elect & Informat Engn Sydney NSW 2006 Australia Univ NSW Sch Elect Engn & Telecommun Sydney NSW Australia
This research paper presents an advanced approach to enhance the short-term wind power prediction based on artificial intelligence techniques. A high-quality wind power prediction is essential for power system plannin... 详细信息
来源: 评论
Construction of precise support vector machine based models for predicting promoter strength
收藏 引用
Frontiers of Electrical and Electronic Engineering in China 2017年 第1期5卷 90-98页
作者: Hailin Meng Yingfei Ma Guoqin Mai Yong Wang Chenli Liu Bioengineering Research Center Guangzhou Institute of Advanced Technology Chinese Academy of Sciences Guangzhou 511458 China Center for Synthetic Biology Engineering Research Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China Chinese Academy of Sciences Key Laboratory of Synthetic Biology Institute of Plant Physiology and Ecology Shanghai Institutes for Biological Sciences Chinese Academy of Sciences Shanghai 200032 China
Background: The prediction of the prokaryotic promoter strength based on its sequence is of great importance not only in the fundamental research of life sciences but also in the appfied aspect of synthetic biology. ... 详细信息
来源: 评论
Application and Performance Evaluation of Object Detection Technology Based on Computer Vision  14
Application and Performance Evaluation of Object Detection T...
收藏 引用
14th Asian Control Conference (ASCC)
作者: Li, WeiXue Zhang, Hang Wan, Cong Shi, JiaWen Li, TingRu Natl Key Lab Complex Syst Control & Intelligent A Beijing Peoples R China Minist Ind & Informat Technol Talent Exchange Ctr Beijing Peoples R China
In light of the challenges posed by the variability of industrial part shapes, weak texture information, and surface reflections in current industrial vision inspection, traditional methods such as feature descriptors... 详细信息
来源: 评论
support vector machine Predictive Control for Superheated Steam Temperature Based on Particle Swarm Optimization
Support Vector Machine Predictive Control for Superheated St...
收藏 引用
Asia-Pacific Power and Energy Engineering Conference (APPEEC)
作者: Zhao, Dandan Liang, Ping South China Univ Technol Sch Elect Power Guangzhou Guangdong Peoples R China
The processes with characters of nonlinear and time-varying is common in power plant. In order to achieve high control performance and effectiveness, a predictive control strategy combining support vector machine mode... 详细信息
来源: 评论
Prediction of hepatitis C virus interferon/ribavirin therapy outcome based on viral nucleotide attributes using machine learning algorithms
收藏 引用
BMC Research Notes 2014年 第1期7卷 1-11页
作者: Kayvanjoo, Amir Hossein Ebrahimi, Mansour Haqshenas, Gholamreza Department of Biology School of Basic Sciences University of Qom Qom Iran Microbiology Department Monash University Melbourne Australia
Background: Hepatitis C virus (HCV) causes chronic hepatitis C in 2-3% of world population and remains one of the health threatening human viruses, worldwide. In the absence of an effective vaccine, therapeutic approa... 详细信息
来源: 评论
Coreference based event-argument relation extraction on biomedical text
收藏 引用
Journal of Biomedical Semantics 2011年 第5期2卷 1-14页
作者: Yoshikawa, Katsumasa Riedel, Sebastian Hirao, Tsutomu Asahara, Masayuki Matsumoto, Yuji Nara Institute of Science and Technology Graduate School of Information Science Ikoma Nara 8916-5 Takayama Japan University of Massachusetts Amherst Amherst 01002 MA United States NTT Communication Science Laboratories 2-4 Hikaridai Seika-cho Keihanna Science City Kyoto Japan
This paper presents a new approach to exploit coreference information for extracting event-argument (E-A) relations from biomedical documents. This approach has two advantages: (1) it can extract a large number of val... 详细信息
来源: 评论
Feature selection and validated predictive performance in the domain of Legionella pneumophila: A comparative study
收藏 引用
BMC Research Notes 2016年 第1期9卷 1-7页
作者: Van Der Ploeg, Tjeerd Steyerberg, Ewout W. Department of Science Medical Center Alkmaar Inholland University Alkmaar Netherlands Department of Public Health Erasmus MC-University Medical Center Rotterdam Rotterdam Netherlands
Background: Genetic comparisons of clinical and environmental Legionella strains form an essential part of outbreak investigations. DNA microarrays often comprise many DNA markers (features). Feature selection and the... 详细信息
来源: 评论
Reliability prediction of CNC machine tools based on GM(1,1)-SVM combined model  5
Reliability prediction of CNC machine tools based on GM(1,1)...
收藏 引用
5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)
作者: Li, Dong-yang Piao, Cheng-dao Wang, De-chao Zhao, De-jin Yanbian Univ Engn Coll Yanji Jilin Peoples R China
Aiming at the characteristics of low cost and complex influencing factors of CNC machine tool failure data sample collection, a combination prediction model based on gray prediction and support vector machine is propo... 详细信息
来源: 评论
Analysis and prediction of cancerlectins using evolutionary and domain information
收藏 引用
BMC Research Notes 2011年 第1期4卷 1-9页
作者: Kumar, Ravi Panwar, Bharat Chauhan, Jagat S. Raghava, Gajendra Ps Bioinformatics Centre Institute of Microbial Technology Chandigarh India
Background: Predicting the function of a protein is one of the major challenges in the post-genomic era where a large number of protein sequences of unknown function are accumulating rapidly. Lectins are the proteins ... 详细信息
来源: 评论