咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 17 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 42 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 10 篇 计算机科学与技术...
    • 9 篇 机械工程
    • 7 篇 控制科学与工程
    • 5 篇 电气工程
    • 4 篇 软件工程
    • 3 篇 动力工程及工程热...
    • 2 篇 仪器科学与技术
    • 2 篇 测绘科学与技术
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 2 篇 环境科学与工程(可...
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 信息与通信工程
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 船舶与海洋工程
  • 10 篇 理学
    • 5 篇 地球物理学
    • 3 篇 物理学
    • 2 篇 天文学
    • 1 篇 数学
    • 1 篇 化学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 7 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 2 篇 公共管理
  • 3 篇 医学
    • 2 篇 基础医学(可授医学...

主题

  • 42 篇 support vector r...
  • 5 篇 machine learning
  • 3 篇 amplifier amplit...
  • 3 篇 particle swarm o...
  • 3 篇 performance of a...
  • 2 篇 support vector m...
  • 2 篇 predictive model
  • 2 篇 traumatic brain ...
  • 2 篇 kernel function
  • 2 篇 particle swarm a...
  • 2 篇 fuel cell
  • 2 篇 performance pred...
  • 1 篇 the correlation ...
  • 1 篇 sparrow algorith...
  • 1 篇 input vswr
  • 1 篇 parameter optimi...
  • 1 篇 random forest
  • 1 篇 support vector m...
  • 1 篇 loss function
  • 1 篇 forecast

机构

  • 1 篇 jinan univ dept ...
  • 1 篇 nanjing univ pos...
  • 1 篇 shanghai greenbu...
  • 1 篇 southern marine ...
  • 1 篇 univ calif los a...
  • 1 篇 mindanao state u...
  • 1 篇 school of mechan...
  • 1 篇 state grid sichu...
  • 1 篇 harbin univ sci ...
  • 1 篇 n china elect po...
  • 1 篇 the university o...
  • 1 篇 ningbo tiankong ...
  • 1 篇 bohai univ coll ...
  • 1 篇 nasa goddard spa...
  • 1 篇 tianjin univ key...
  • 1 篇 northeast normal...
  • 1 篇 anhui xinhua uni...
  • 1 篇 school of mechan...
  • 1 篇 中北大学
  • 1 篇 state grid econ ...

作者

  • 2 篇 ma xiaojun
  • 2 篇 fang cheng
  • 2 篇 pan yifeng
  • 2 篇 ye hanqi
  • 2 篇 yang tianxin
  • 2 篇 hou yongping
  • 1 篇 wang y.
  • 1 篇 zhou qichao
  • 1 篇 keskin ahmet ken...
  • 1 篇 sipes t. b.
  • 1 篇 xu daxing
  • 1 篇 feng-ping pan
  • 1 篇 zhiqiang zhang
  • 1 篇 kong fanrang
  • 1 篇 guo pan
  • 1 篇 zhu xueling
  • 1 篇 shen changqing
  • 1 篇 guan xinyu
  • 1 篇 wang guibao
  • 1 篇 dai ye

语言

  • 39 篇 英文
  • 3 篇 中文
检索条件"主题词=Support Vector Regression Machine"
42 条 记 录,以下是1-10 订阅
排序:
Performance Evaluation of support vector regression machine Models in Water Level Forecasting
收藏 引用
Procedia Computer Science 2024年 234卷 436-447页
作者: Lemuel Clark Velasco Alyssa Jenn Estose Melcris Opon Emily Tabanao Floremie Apdian Mindanao State University-Iligan Institute of Technology Iligan City The Philippines Premiere Research Institute of Science and Mathematics – Center for Computational Analytics and Modelling Mindanao State University at Naawan Naawan Misamis Oriental The Philippines
Understanding and predicting water level rise is crucial for effective water resource management, flood control, disaster risk reduction, and adaptation to climate change. This study utilize the use of support vector ... 详细信息
来源: 评论
Interfacial Friction Prediction in a Vertical Annular Two-Phase Flow Based on support vector regression machine
收藏 引用
WATER 2021年 第24期13卷 3609页
作者: Liu, Qiang Feng, Xingya Chen, Junru Southern Univ Sci & Technol Dept Ocean Sci & Engn Shenzhen 518055 Peoples R China Southern Marine Sci & Engn Guangdong Lab Guangzho Guangzhou 511458 Peoples R China
Accurate prediction of interfacial friction factor is critical for calculation of pressure drop and investigation of flow mechanism of vertical annular two-phase flows. Theoretical models of interfacial friction facto... 详细信息
来源: 评论
A 2-D empirical plasma sheet pressure model for substorm growth phase using the support vector regression machine
收藏 引用
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS 2015年 第3期120卷 1957-1973页
作者: Yue, Chao Wang, Chih-Ping Lyons, Larry Wang, Yongli Hsu, Tung-Shin Henderson, Michael Angelopoulos, Vassilis Lui, A. T. Y. Nagai, Tsugunobu Univ Calif Los Angeles Dept Atmospher & Ocean Sci Los Angeles CA 90089 USA Univ Maryland Baltimore Cty Goddard Planetary Heliophys Inst Baltimore MD USA Univ Calif Los Angeles Dept Earth & Space Sci Los Angeles CA 90024 USA Los Alamos Natl Lab Space Sci & Applicat Los Alamos NM USA Johns Hopkins Univ Appl Phys Lab Laurel MD USA Tokyo Inst Technol Dept Earth & Planetary Sci Tokyo 152 Japan
The plasma sheet pressure and its spatial structure during the substorm growth phase are crucial to understanding the development and initiation of substorms. In this paper, we first statistically analyzed the growth ... 详细信息
来源: 评论
The Nonlinear Correction Model Research based on Wavelet support vector regression machine Sensor
The Nonlinear Correction Model Research based on Wavelet Sup...
收藏 引用
作者: Ning TIAN Yongsheng WAN School of Mechanical and Electrical Engineering Southwest Petroleum University
In view of the sensor due to factors such as aging, drift, temperature change caused by the sensor input and output of nonlinear problems, the support vector machine(SVM) based on wavelet kernel data correction, the n... 详细信息
来源: 评论
Forecasting of Electricity Load Based on Improved Particle Swarm Optimization and support vector regression machine
Forecasting of Electricity Load Based on Improved Particle S...
收藏 引用
2015 International Conference on Test, Measurement and Computational Method (TMCM 2015)
作者: Limei Liu Department of basic education Shenyang Institute of Engineering
support vector regression machine is suitable for small sample decision and it is good to data forecasting capabilities. Its nature of learning method is under the condition of limited information to obtain a good abi... 详细信息
来源: 评论
An e-E-insensitive support vector regression machine
收藏 引用
COMPUTATIONAL STATISTICS 2014年 第6期29卷 1447-1468页
作者: Safari, Amir Cent Insurance IR Iran Tehran Iran
According to the Statistical Learning Theory, the support vectors represent the most informative data points and compress the information contained in training set. However, a basic problem in the standard support vec... 详细信息
来源: 评论
Dynamic Modeling of SOFC Based on support vector regression machine and Improved Particle Swarm Optimization  11
Dynamic Modeling of SOFC Based on Support Vector Regression ...
收藏 引用
11th World Congress on Intelligent Control and Automation
作者: Huo, Haibo Ji, Yi Kuang, Xinghong Liu, Yuqing Wu, Yanxiang Shanghai Ocean Univ Dept Elect Engn Shanghai 201306 Peoples R China
For predicting the electrochemical and heat transfer dynamics synchronously, a dynamic identification model of the solid oxide fuel cell (SOFC) is reported. In this study, support vector regression machine (SVRM) is p... 详细信息
来源: 评论
Some support vector regression machines with Given Empirical Risks Partly
收藏 引用
电脑学刊 2022年 第5期33卷 61-72页
作者: Lin-Kai Luo Chao-Jie Xu Ling-Jun Ye Hong Peng
There are often some prior requirements about empirical risk in regression problems. To meet these requirements, this paper firstly proposes two novel support vector regression machine models in which part of empirica... 详细信息
来源: 评论
A hybrid-forecasting model reducing Gaussian noise based on the Gaussian support vector regression machine and chaotic particle swarm optimization
收藏 引用
INFORMATION SCIENCES 2013年 238卷 96-110页
作者: Wu, Qi Law, Rob Wu, Edmond Lin, Jinxing Shanghai Jiao Tong Univ Sch Aeronaut & Astronaut Shanghai 200040 Peoples R China Hong Kong Polytech Univ Sch Hotel & Tourism Management Kowloon Hong Kong Peoples R China Sun Yat Sen Univ Sch Tourism Management Guangzhou 510275 Guangdong Peoples R China Nanjing Univ Posts & Telecommun Coll Automat Nanjing 210046 Jiangsu Peoples R China
In this paper, the relationship between Gaussian noise and the loss function of the support vector regression machine (SVRM) is analyzed, and then a Gaussian loss function proposed to reduce the effect of such noise o... 详细信息
来源: 评论
A new three-dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations
收藏 引用
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS 2013年 第5期118卷 2173-2184页
作者: Wang, Y. Sibeck, D. G. Merka, J. Boardsen, S. A. Karimabadi, H. Sipes, T. B. Safrankova, J. Jelinek, K. Lin, R. NASA Goddard Space Flight Ctr Heliophys Sci Div Greenbelt MD 20771 USA Univ Maryland Goddard Planetary Heliophys Inst Baltimore MD 21201 USA SciberQuest Inc Del Mar CA USA Charles Univ Prague Fac Math & Phys Prague Czech Republic Chinese Acad Sci Natl Space Sci Ctr Beijing Peoples R China
We present results from a new three-dimensional empirical magnetopause model based on 15,089 magnetopause crossings from 23 spacecraft. To construct the model, we introduce a support vector regression machine (SVRM) t... 详细信息
来源: 评论