咨询与建议

限定检索结果

文献类型

  • 3 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 5 篇 计算机科学与技术...
    • 1 篇 电气工程
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 5 篇 suppressed fuzzy...
  • 4 篇 competitive clus...
  • 4 篇 fuzzy c-means al...
  • 3 篇 alternating opti...
  • 2 篇 learning rate
  • 1 篇 context sensitiv...
  • 1 篇 image segmentati...
  • 1 篇 non local spatia...
  • 1 篇 self-tuning stra...
  • 1 篇 fuzzy clustering

机构

  • 2 篇 budapest univ te...
  • 2 篇 sapientia univ t...
  • 2 篇 sapientia hungar...
  • 1 篇 shaanxi normal u...
  • 1 篇 xian univ posts ...

作者

  • 4 篇 szilagyi laszlo
  • 4 篇 szilagyi sandor ...
  • 3 篇 benyo zoltan
  • 1 篇 kiss csilla
  • 1 篇 zhao feng
  • 1 篇 fan jiulun
  • 1 篇 liu hanqiang

语言

  • 5 篇 英文
检索条件"主题词=Suppressed fuzzy c-means algorithm"
5 条 记 录,以下是1-10 订阅
排序:
Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: a study on the competition in c-means clustering models
收藏 引用
SOFT cOMPUTING 2010年 第5期14卷 495-505页
作者: Szilagyi, Laszlo Szilagyi, Sandor M. Benyo, Zoltan Sapientia Univ Transylvania Fac Tech & Human Sci Corunca 547367 Romania Budapest Univ Technol & Econ Dept Control Engn & Informat Technol H-1117 Budapest Hungary
suppressed fuzzy c-means (s-FcM) clustering was introduced in Fan et al. (Pattern Recogn Lett 24: 1607-1612, 2003) with the intention of combining the higher speed of hard c-means (HcM) clustering with the better clas... 详细信息
来源: 评论
A Generalized Approach to the suppressed fuzzy c-means algorithm
A Generalized Approach to the Suppressed Fuzzy <i>c</i>-Mean...
收藏 引用
7th International conference on Modeling Decisions for Artificial Intelligence (MDAI)
作者: Szilagyi, Laszlo Szilagyi, Sandor M. Kiss, csilla Sapientia Hungarian Sci Univ Transylvania Fac Tech & Human Sci Targu Mures Romania
suppressed fuzzy c-means (s-FcM) clustering was introduced with the intention of combining the higher convergence speed of hard c-means (HcM) clustering with the finer partition quality of fuzzy c-means (FcM) algorith... 详细信息
来源: 评论
A Thorough Analysis of the suppressed fuzzy c-means algorithm
收藏 引用
13th Iberoamerican congress on Progress in Pattern Recognition, Image Analysis and Applications
作者: Szilagyi, Laszlo Szilagyi, Sandor M. Benyo, Zoltan Sapientia Hungarian Sci Univ Transylvania Fac Tech & Human Sci Targu Mures Romania
suppressed fuzzy c-means (s-FcM) clustering was introduced in [Fan, J. L., Zhen, W. Z., Xie, W. X.: suppressed fuzzy c-means clustering algorithm. Patt. Recogn. Lett. 24, 1607-1612 (2003)] with the intention of combin... 详细信息
来源: 评论
Analytical and numerical evaluation of the suppressed fuzzy c-means algorithm: a study on the competition in c-means clustering models
Analytical and numerical evaluation of the suppressed fuzzy ...
收藏 引用
5th International conference on Modeling Decisions for Artificial Intelligence
作者: Szilagyi, Laszlo Szilagyi, Sandor M. Benyo, Zoltan Sapientia Univ Transylvania Fac Tech & Human Sci Corunca 547367 Romania Budapest Univ Technol & Econ Dept Control Engn & Informat Technol H-1117 Budapest Hungary
suppressed fuzzy c-means (s-FcM) clustering was introduced in Fan et al. (Pattern Recogn Lett 24: 1607-1612, 2003) with the intention of combining the higher speed of hard c-means (HcM) clustering with the better clas... 详细信息
来源: 评论
Optimal-selection-based suppressed fuzzy c-means clustering algorithm with self-tuning non local spatial information for image segmentation
收藏 引用
EXPERT SYSTEMS WITH APPLIcATIONS 2014年 第9期41卷 4083-4093页
作者: Zhao, Feng Fan, Jiulun Liu, Hanqiang Xian Univ Posts & Telecommun Sch Telecommun & Informat Engn Xian 710061 Peoples R China Shaanxi Normal Univ Sch Comp Sci Xian Peoples R China
suppressed fuzzy c-means clustering algorithm (S-FcM) is one of the most effective fuzzy clustering algorithms. Even if S-FcM has some advantages, some problems exist. First, it is unreasonable to compulsively modify ... 详细信息
来源: 评论