咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 28 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 27 篇 工学
    • 25 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
  • 8 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 5 篇 理学
    • 4 篇 数学
    • 1 篇 生物学

主题

  • 28 篇 surrogate-assist...
  • 5 篇 differential evo...
  • 3 篇 surrogate models
  • 3 篇 computationally ...
  • 3 篇 expensive optimi...
  • 2 篇 multi-objective ...
  • 2 篇 ensemble learnin...
  • 2 篇 deep learning
  • 2 篇 neuroevolution
  • 2 篇 expensive combin...
  • 2 篇 optimization
  • 2 篇 particle swarm o...
  • 2 篇 expensive constr...
  • 1 篇 nbsp
  • 1 篇 high-dimensional...
  • 1 篇 high-dimensional...
  • 1 篇 expensive optimi...
  • 1 篇 random forest
  • 1 篇 multi-objective ...
  • 1 篇 radial basis fun...

机构

  • 2 篇 xidian univ sch ...
  • 2 篇 fujian univ tech...
  • 1 篇 st josephs univ ...
  • 1 篇 indian inst tech...
  • 1 篇 tianjin univ sch...
  • 1 篇 ctr wiskunde & i...
  • 1 篇 natl inst techno...
  • 1 篇 delft univ techn...
  • 1 篇 nanjing univ inf...
  • 1 篇 huazhong univ sc...
  • 1 篇 univ chinese aca...
  • 1 篇 natl ctr technol...
  • 1 篇 leiden univ med ...
  • 1 篇 wuhan univ sci &...
  • 1 篇 natl nat sci fdn...
  • 1 篇 nanchang univ ji...
  • 1 篇 inst plasma res ...
  • 1 篇 maynooth univ ha...
  • 1 篇 chinese acad sci...
  • 1 篇 honda res inst e...

作者

  • 3 篇 yang zan
  • 3 篇 jiang chen
  • 3 篇 qiu haobo
  • 3 篇 gao liang
  • 2 篇 yu laiqi
  • 2 篇 wang handing
  • 2 篇 jin yaochu
  • 2 篇 meng zhenyu
  • 2 篇 liu shulei
  • 2 篇 stapleton fergal
  • 2 篇 bosman peter a. ...
  • 2 篇 alderliesten tan...
  • 2 篇 galvan edgar
  • 1 篇 yao wen
  • 1 篇 zhang tao
  • 1 篇 you xiongxiong
  • 1 篇 yang qiang
  • 1 篇 li yang
  • 1 篇 xu peilan
  • 1 篇 dash jogesh c.

语言

  • 28 篇 英文
检索条件"主题词=Surrogate-assisted Evolutionary Algorithms"
28 条 记 录,以下是21-30 订阅
排序:
A Convolutional Neural Network-Based surrogate Model for Multi-objective Optimization evolutionary Algorithm Based on Decomposition
收藏 引用
SWARM AND evolutionary COMPUTATION 2022年 72卷
作者: Zhang, Tao Li, Fuzhang Zhao, Xin Qi, Wang Liu, Tianwei Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Tianjin Univ Sch Tianjin Int Engn Inst Tianjin 300072 Peoples R China
evolutionary algorithms (EAs) show good performance in solving multi-objective optimization problems (MOPs). An EA needs to perform a substantial number of fitness evaluations. For the MOP with high complexity, the fi... 详细信息
来源: 评论
An Expensive Multi-objective Optimization Algorithm Based on Regional Density Ratio  15th
An Expensive Multi-objective Optimization Algorithm Based on...
收藏 引用
15th International Conference on Advances in Swarm Intelligence (ICSI)
作者: Jiang, Zijian Sun, Chaoli Liu, Xiaotong Li, Jing Wang, Kexin Taiyuan Univ Sci & Technol Sch Comp Sci & Technol Taiyuan 030024 Peoples R China Taiyuan Univ Sci & Technol Sch Elect Informat Engn Taiyuan 030024 Peoples R China 2nd Engn Co Ltd China Railway 12th Bur Grp Taiyuan 030024 Peoples R China
Training surrogate models with high quality often requires a sufficient quantity of labelled data with a balanced distribution. However, obtaining enough labelled solutions for expensive optimization problems is chall... 详细信息
来源: 评论
Initial Steps Towards Tackling High-dimensional surrogate Modeling for Neuroevolution Using Kriging Partial Least Squares
Initial Steps Towards Tackling High-dimensional Surrogate Mo...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Stapleton, Fergal Galvan, Edgar Maynooth Univ Hamilton Inst Naturally Inspired Computat Res Grp Maynooth Kildare Ireland Maynooth Univ Hamilton Inst Dept CS Naturally Inspired Comp Res Grp Maynooth Kildare Ireland
surrogate-assisted evolutionary algorithms (SAEAs) aim to use efficient computational models with the goal of approximating the fitness function in evolutionary computation systems. This area of research has received ... 详细信息
来源: 评论
Curious-II: A Multi/Many-Objective Optimization Algorithm with Subpopulations based on Multi-novelty Search
Curious-II: A Multi/Many-Objective Optimization Algorithm wi...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Jiang, Yuzi Vargas, Danilo Vasconcellos State Grid Informat & Telecommun Grp CO LTD Beijing Peoples R China Kyushu Univ MiraiX Fukuoka Japan
Novelty search's ability to efficiently explore the fitness space is gaining attention. Different novelty metrics, however, produce different search results. Here we show that novelty metrics are complementary and... 详细信息
来源: 评论
Ensemble of deep learning models with surrogate-based optimization for medical image segmentation
Ensemble of deep learning models with surrogate-based optimi...
收藏 引用
IEEE Congress on evolutionary Computation (CEC)
作者: Truong Dang Anh Vu Luong Liew, Alan Wee Chung McCall, John Tien Thanh Nguyen Robert Gordon Univ Sch Comp Aberdeen Scotland Griffith Univ Sch Informat & Commun Technol Nathan Qld Australia
Deep Neural Networks (DNNs) have created a breakthrough in medical image analysis in recent years. Because clinical applications of automated medical analysis are required to be reliable, robust and accurate, it is ne... 详细信息
来源: 评论
A classification-assisted environmental selection strategy for multiobjective optimization
收藏 引用
SWARM AND evolutionary COMPUTATION 2022年 第0期71卷
作者: Zhang, Jinyuan Ishibuchi, Hisao He, Linjun Southern Univ Sci & Technol Dept Comp Sci & Engn Guangdong Prov Key Lab Brain Inspired Intelligent Shenzhen 518055 Peoples R China
Environmental selection of multiobjective evolutionary algorithms (MOEAs) is a key component that chooses promising solutions from a candidate set for later usage. Most environmental selection strategies choose soluti... 详细信息
来源: 评论
Growing Neural Gas Network-based surrogate-assisted Pareto set learning for multimodal multi-objective optimization
收藏 引用
SWARM AND evolutionary COMPUTATION 2024年 87卷
作者: Ming, Fei Gong, Wenyin Jin, Yaochu China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China Westlake Univ Sch Engn Hangzhou 310030 Peoples R China
The key issue in handling multimodal multi -objective optimization problems (MMOPs) is to find multiple Pareto sets (PSs) corresponding to one Pareto front (PF). Therefore, learning the PSs is critical to facilitate s... 详细信息
来源: 评论
Uncertainty Handling in surrogate assisted Optimisation of Games Dissertation Abstract
收藏 引用
KUNSTLICHE INTELLIGENZ 2020年 第1期34卷 95-99页
作者: Volz, Vanessa Queen Mary Univ London London England
Real-world problems are often affected by uncertainties of different types and from multiple sources. algorithms created for expensive optimisation, such as model-based optimisers, introduce additional errors. We argu... 详细信息
来源: 评论