咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 35 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 22 篇 计算机科学与技术...
    • 15 篇 电气工程
    • 4 篇 控制科学与工程
    • 3 篇 信息与通信工程
    • 2 篇 软件工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 生物工程
  • 11 篇 理学
    • 6 篇 数学
    • 5 篇 生物学
    • 2 篇 物理学
    • 1 篇 统计学(可授理学、...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 35 篇 symmetric nonneg...
  • 9 篇 clustering
  • 6 篇 symmetric matric...
  • 5 篇 matrix decomposi...
  • 4 篇 karush-kuhn-tuck...
  • 3 篇 human microbiome
  • 3 篇 community detect...
  • 3 篇 multi-view clust...
  • 3 篇 optimization
  • 3 篇 nonnegative matr...
  • 3 篇 variable splitti...
  • 3 篇 laplacian regula...
  • 3 篇 global and local...
  • 2 篇 dimensionality r...
  • 2 篇 convergence
  • 2 篇 hessian regulari...
  • 2 篇 graph clustering
  • 2 篇 feature extracti...
  • 2 篇 minimization
  • 2 篇 clustering algor...

机构

  • 4 篇 cent china norma...
  • 4 篇 cent china norma...
  • 2 篇 iowa state univ ...
  • 2 篇 guangdong prov k...
  • 2 篇 georgia inst tec...
  • 2 篇 nanyang technol ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 guangdong univ t...
  • 1 篇 city univ hong k...
  • 1 篇 sungkyunkwan uni...
  • 1 篇 univ texas austi...
  • 1 篇 univ western syd...
  • 1 篇 iit-cnr via g. m...
  • 1 篇 shenzhen inst ar...
  • 1 篇 anyang normal un...
  • 1 篇 queensland univ ...
  • 1 篇 wake forest univ...
  • 1 篇 natl sun yat sen...
  • 1 篇 school of comput...
  • 1 篇 univ kurdistan d...

作者

  • 5 篇 ma yuanyuan
  • 4 篇 hu xiaohua
  • 4 篇 he tingting
  • 4 篇 jiang xingpeng
  • 3 篇 hong mingyi
  • 3 篇 lu songtao
  • 2 篇 yang zhijing
  • 2 篇 peng siyuan
  • 2 篇 chen badong
  • 2 篇 lin zhiping
  • 2 篇 yin jingxing
  • 2 篇 wang zhengdao
  • 2 篇 park haesun
  • 1 篇 hayashi koby
  • 1 篇 ballard grey
  • 1 篇 liu dong
  • 1 篇 al-sharoa esraa ...
  • 1 篇 liu bo
  • 1 篇 favati p.
  • 1 篇 razaviyayn meisa...

语言

  • 34 篇 英文
  • 1 篇 其他
检索条件"主题词=Symmetric Nonnegative Matrix Factorization"
35 条 记 录,以下是1-10 订阅
排序:
symmetric nonnegative matrix factorization with elastic-net regularized block-wise weighted representation for clustering
收藏 引用
PATTERN ANALYSIS AND APPLICATIONS 2022年 第4期25卷 807-817页
作者: Rodriguez-Dominguez, Ulises Dalmau, Oscar Math Res Ctr Guanajuato Mexico
In unsupervised learning, symmetric nonnegative matrix factorization (NMF) has proven its efficacy for various clustering tasks in recent years, considering both linearly and nonlinearly separable data. On the other h... 详细信息
来源: 评论
Efficient method for symmetric nonnegative matrix factorization with an approximate augmented Lagrangian scheme
收藏 引用
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS 2025年 454卷
作者: Zhu, Hong Niu, Chenchen Liang, Yongjin Jiangsu Univ Sch Math Sci 301 Xuefu Rd Zhenjiang 212013 Jiangsu Peoples R China Wuxi Yanqiao High Sch Jiangsu 214171 Peoples R China
In this paper, we propose an efficient method for solving symmetric nonnegative matrix factorization following an approximate augmented Lagrangian scheme. The augmented Lagrangian subproblem was solved column by colum... 详细信息
来源: 评论
RANDOMIZED ALGORITHMS FOR symmetric nonnegative matrix factorization
收藏 引用
SIAM JOURNAL ON matrix ANALYSIS AND APPLICATIONS 2025年 第1期46卷 584-625页
作者: Hayashi, Koby Aksoy, Sinan g. Ballard, Grey Park, Haesun Georgia Inst Technol Sch Computat Sci & Engn Atlanta GA 30332 USA Pacific Northwest Natl Lab Seattle WA 98109 USA Wake Forest Univ Dept Comp Sci Winston Salem NC 27109 USA
symmetric nonnegative matrix factorization (SymNMF) is a technique in data analysis and machine learning that approximates a symmetric matrix with a product of a nonnegative, low-rank matrix and its transpose. To desi... 详细信息
来源: 评论
One-hot constrained symmetric nonnegative matrix factorization for image clustering
收藏 引用
PATTERN RECOGNITION 2025年 162卷
作者: Li, Jie Li, Chaoqian Kunming Univ Sch Math 2 Puxin Rd Kunming 650214 Yunnan Peoples R China Yunnan Univ Sch Math & Stat 2 Cuihu North Rd Kunming 650091 Yunnan Peoples R China
Semi-supervised symmetric Non-Negative matrix factorization (SNMF) has proven to bean effective clustering method. However, most existing semi-supervised SNMF approaches rely on sophisticated techniques to incorporate... 详细信息
来源: 评论
symmetric nonnegative matrix factorization: A systematic review
收藏 引用
NEUROCOMPUTING 2023年 第1期557卷
作者: Chen, Wen-Sheng Xie, Kexin Liu, Rui Pan, Binbin Shenzhen Univ Coll Math & Stat Shenzhen 518060 Peoples R China Guangdong Key Lab Intelligent Informat Proc Shenzhen 518060 Peoples R China
In recent years, symmetric non-negative matrix factorization (SNMF), a variant of non-negative matrix factorization (NMF), has emerged as a promising tool for data analysis. This paper mainly focuses on the theoretica... 详细信息
来源: 评论
Multiview Clustering via Hypergraph Induced Semi-Supervised symmetric nonnegative matrix factorization
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2023年 第10期33卷 5510-5524页
作者: Peng, Siyuan Yin, Jingxing Yang, Zhijing Chen, Badong Lin, Zhiping Guangdong Univ Technol Sch Informat Engn Guangzhou 510006 Peoples R China Guangdong Prov Key Lab Intellectual Property & Big Guangzhou 510006 Peoples R China Xi An Jiao Tong Univ Inst Artificial Intelligence & Robot Xian 710049 Peoples R China Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore
nonnegative matrix factorization (NMF) based multiview technique has been commonly used in multiview data clustering tasks. However, previous NMF based multiview clustering approaches fail to take advantage of a small... 详细信息
来源: 评论
A Progressive Hierarchical Alternating Least Squares Method for symmetric nonnegative matrix factorization
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023年 第5期45卷 5355-5369页
作者: Hou, Liangshao Chu, Delin Liao, Li-Zhi Hong Kong Baptist Univ Dept Math Hong Kong Peoples R China Natl Univ Singapore Dept Math Singapore 119076 Singapore
In this article, we study the symmetric nonnegative matrix factorization (SNMF) which is a powerful tool in data mining for dimension reduction and clustering. The main contributions of the present work include: (i) a... 详细信息
来源: 评论
A Provable Splitting Approach for symmetric nonnegative matrix factorization
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2023年 第3期35卷 2206-2219页
作者: Li, Xiao Zhu, Zhihui Li, Qiuwei Liu, Kai Chinese Univ Hong Kong Sch Data Sci Shenzhen 518172 Guangdong Peoples R China Shenzhen Inst Artificial Intelligence & Robot Soc Shenzhen Guangdong Peoples R China Univ Denver Dept Elect & Comp Engn Denver CO 80208 USA Alibaba Grp Damo Acad Decis Intelligence Lab Bellevue WA 98004 USA Clemson Univ Comp Sci Div Clemson SC 29634 USA
The symmetric nonnegative matrix factorization (NMF), a special but important class of the general NMF, has found numerous applications in data analysis such as various clustering tasks. Unfortunately, designing fast ... 详细信息
来源: 评论
symmetric nonnegative matrix factorization Based on Box-Constrained Half-Quadratic Optimization
收藏 引用
IEEE ACCESS 2020年 8卷 170976-170990页
作者: Chen, Bo-Wei Natl Sun Yat Sen Univ Dept Elect Engn Kaohsiung 80424 Taiwan Pervas Artificial Intelligence Res PAIR Labs Hsinchu 30010 Taiwan
nonnegative matrix factorization (NMF) based on half-quadratic (HQ) functions was proven effective and robust when dealing with data contaminated by continuous occlusion according to the half-quadratic optimization th... 详细信息
来源: 评论
Self-Supervised symmetric nonnegative matrix factorization
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2022年 第7期32卷 4526-4537页
作者: Jia, Yuheng Liu, Hui Hou, Junhui Kwong, Sam Zhang, Qingfu Southeast Univ Sch Comp Sci & Engn Minist Educ Nanjing 210096 Peoples R China Southeast Univ Key Lab Comp Network & Informat Integrat Minist Educ Nanjing 210096 Peoples R China Caritas Inst Higher Educ Sch Comp & Informat Sci Hong Kong Peoples R China City Univ Hong Kong CityU Dept Comp Sci Hong Kong Peoples R China City Univ Hong Kong Shenzhen Res Inst Shenzhen 51800 Peoples R China
symmetric nonnegative matrix factorization (SNMF) has demonstrated to be a powerful method for data clustering. However, SNMF is mathematically formulated as a non-convex optimization problem, making it sensitive to t... 详细信息
来源: 评论