咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 35 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 22 篇 计算机科学与技术...
    • 15 篇 电气工程
    • 4 篇 控制科学与工程
    • 3 篇 信息与通信工程
    • 2 篇 软件工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 石油与天然气工程
    • 1 篇 生物工程
  • 11 篇 理学
    • 6 篇 数学
    • 5 篇 生物学
    • 2 篇 物理学
    • 1 篇 统计学(可授理学、...
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 1 篇 临床医学
    • 1 篇 特种医学
    • 1 篇 医学技术(可授医学...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学

主题

  • 35 篇 symmetric nonneg...
  • 9 篇 clustering
  • 6 篇 symmetric matric...
  • 5 篇 matrix decomposi...
  • 4 篇 karush-kuhn-tuck...
  • 3 篇 human microbiome
  • 3 篇 community detect...
  • 3 篇 multi-view clust...
  • 3 篇 optimization
  • 3 篇 nonnegative matr...
  • 3 篇 variable splitti...
  • 3 篇 laplacian regula...
  • 3 篇 global and local...
  • 2 篇 dimensionality r...
  • 2 篇 convergence
  • 2 篇 hessian regulari...
  • 2 篇 graph clustering
  • 2 篇 feature extracti...
  • 2 篇 minimization
  • 2 篇 clustering algor...

机构

  • 4 篇 cent china norma...
  • 4 篇 cent china norma...
  • 2 篇 iowa state univ ...
  • 2 篇 guangdong prov k...
  • 2 篇 georgia inst tec...
  • 2 篇 nanyang technol ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 guangdong univ t...
  • 1 篇 city univ hong k...
  • 1 篇 sungkyunkwan uni...
  • 1 篇 univ texas austi...
  • 1 篇 univ western syd...
  • 1 篇 iit-cnr via g. m...
  • 1 篇 shenzhen inst ar...
  • 1 篇 anyang normal un...
  • 1 篇 queensland univ ...
  • 1 篇 wake forest univ...
  • 1 篇 natl sun yat sen...
  • 1 篇 school of comput...
  • 1 篇 univ kurdistan d...

作者

  • 5 篇 ma yuanyuan
  • 4 篇 hu xiaohua
  • 4 篇 he tingting
  • 4 篇 jiang xingpeng
  • 3 篇 hong mingyi
  • 3 篇 lu songtao
  • 2 篇 yang zhijing
  • 2 篇 peng siyuan
  • 2 篇 chen badong
  • 2 篇 lin zhiping
  • 2 篇 yin jingxing
  • 2 篇 wang zhengdao
  • 2 篇 park haesun
  • 1 篇 hayashi koby
  • 1 篇 ballard grey
  • 1 篇 liu dong
  • 1 篇 al-sharoa esraa ...
  • 1 篇 liu bo
  • 1 篇 favati p.
  • 1 篇 razaviyayn meisa...

语言

  • 34 篇 英文
  • 1 篇 其他
检索条件"主题词=Symmetric Nonnegative Matrix Factorization"
35 条 记 录,以下是21-30 订阅
排序:
Inexact Block Coordinate Descent Methods for symmetric nonnegative matrix factorization
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2017年 第22期65卷 5995-6008页
作者: Shi, Qingjiang Sun, Haoran Lu, Songtao Hong, Mingyi Razaviyayn, Meisam Iowa State Univ Dept Ind & Mfg Syst Engn Ames IA 50011 USA Nanjing Univ Aeronaut & Astronaut Coll Elect Informat Engn Nanjing 210016 Jiangsu Peoples R China Univ Southern Calif Daniel J Epstein Dept Ind & Syst Engn Los Angeles CA 90089 USA
symmetric nonnegativematrix factorization (SNMF) is equivalent to computing a symmetric nonnegative low rank approximation of a data similarity matrix. It inherits the good data interpretability of the well-known nonn... 详细信息
来源: 评论
A Nonconvex Splitting Method for symmetric nonnegative matrix factorization: Convergence Analysis and Optimality
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2017年 第12期65卷 3120-3135页
作者: Lu, Songtao Hong, Mingyi Wang, Zhengdao Iowa State Univ Dept Elect & Comp Engn Ames IA 50011 USA Iowa State Univ Dept Ind & Mfg Syst Ames IA 50011 USA
symmetric nonnegative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection, and image segmentation. In this paper, we propose a novel non... 详细信息
来源: 评论
Sparse symmetric nonnegative matrix factorization Applied to Face Recognition  9
Sparse Symmetric Nonnegative Matrix Factorization Applied to...
收藏 引用
9th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems - Technology and Applications (IDAACS)
作者: Dobrovolskyi, Hennadii Keberle, Nataliya Ternovyy, Yehor Zaporizhzhya Natl Univ Chair Comp Sci 66 Zhukovskogo Str Zaporizhzhya Ukraine
The task of Sparse symmetric nonnegative matrix factorization(SSNMF) is formulated as optimization problem and solved numerically with the method of projected gradients descent. The adjustable sparsity level allows to... 详细信息
来源: 评论
A NONCONVEX SPLITTING METHOD FOR symmetric nonnegative matrix factorization: CONVERGENCE ANALYSIS AND OPTIMALITY
A NONCONVEX SPLITTING METHOD FOR SYMMETRIC NONNEGATIVE MATRI...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Lu, Songtao Hong, Mingyi Wang, Zhengdao Iowa State Univ Dept Elect & Comp Engn Ames IA 50011 USA Iowa State Univ Ind & Mfg Syst Engn Ames IA 50011 USA
symmetric non-negative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel non... 详细信息
来源: 评论
Efficient and Non-Convex Coordinate Descent for symmetric nonnegative matrix factorization
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2016年 第21期64卷 5571-5584页
作者: Vandaele, Arnaud Gillis, Nicolas Lei, Qi Zhong, Kai Dhillon, Inderjit Univ Mons Dept Math & Operat Res B-7000 Mons Belgium Univ Texas Austin Inst Computat Engn & Sci Austin TX 78712 USA Univ Texas Austin Dept Comp Sci Austin TX 78712 USA
Given a symmetric nonnegative matrix A, symmetric nonnegative matrix factorization (symNMF) is the problem of finding a nonnegative matrix H, usually with much fewer columns than A, such that A approximate to HHT. Sym... 详细信息
来源: 评论
A nonconvex splitting method for symmetric nonnegative matrix factorization: Convergence analysis and optimality
A nonconvex splitting method for symmetric nonnegative matri...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Songtao Lu Mingyi Hong Zhengdao Wang Department of Electrical and Computer Engineering Iowa State University Ames 50011 USA Industrial and Manufacturing Systems Engineering Iowa State University Ames 50011 USA
symmetric non-negative matrix factorization (SymNMF) has important applications in data analytics problems such as document clustering, community detection and image segmentation. In this paper, we propose a novel non... 详细信息
来源: 评论
Hessian regularization based symmetric nonnegative matrix factorization for clustering gene expression and microbiome data
收藏 引用
METHODS 2016年 111卷 80-84页
作者: Ma, Yuanyuan Hu, Xiaohua He, Tingting Jiang, Xingpeng Cent China Normal Univ Sch Informat Management Wuhan 430079 Peoples R China Cent China Normal Univ Sch Comp Wuhan 430079 Peoples R China
nonnegative matrix factorization (NMF) has received considerable attention due to its interpretation of observed samples as combinations of different components, and has been successfully used as a clustering method. ... 详细信息
来源: 评论
Multi-View Clustering Microbiome Data by Joint symmetric nonnegative matrix factorization with Laplacian Regularization
Multi-View Clustering Microbiome Data by Joint Symmetric Non...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM)
作者: Ma, Yuanyuan Hu, Xiaohua He, Tingting Jiang, Xingpeng Cent China Normal Univ Sch Informat Management Wuhan Peoples R China Cent China Normal Univ Sch Comp Wuhan Peoples R China Anyang Normal Univ Anyang Peoples R China
Many datasets existed in the real world are often comprised of different representations or views which provide complementary information to each other. For example, microbiome datasets can be represented by metabolic... 详细信息
来源: 评论
Robust Community Detection in Graphs
收藏 引用
IEEE ACCESS 2021年 9卷 118757-118770页
作者: Al-Sharoa, Esraa M. Ababneh, Bara' M. Alkhassaweneh, Mahmood A. Jordan Univ Sci & Technol Elect Engn Dept Irbid 22110 Jordan Yarmouk Univ Comp Engn Dept Irbid 21163 Jordan Lewis Univ Dept Engn Comp & Math Sci Romeoville IL 60446 USA
Community detection in network-type data provides a powerful tool in analyzing and understanding real-world systems. In fact, community detection approaches aim to reduce the network's dimensionality and partition... 详细信息
来源: 评论
symmetric nonnegative matrix factorization: Algorithms and Applications to Probabilistic Clustering
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS 2011年 第12期22卷 2117-2131页
作者: He, Zhaoshui Xie, Shengli Zdunek, Rafal Zhou, Guoxu Cichocki, Andrzej Guangdong Univ Technol Fac Automat Guangzhou 510641 Guangdong Peoples R China RIKEN Brain Sci Inst Lab Adv Brain Signal Proc Wako Saitama 3510198 Japan Wroclaw Univ Technol Inst Telecommun Teleinformat & Acoust PL-50370 Wroclaw Poland Polish Acad Sci Syst Res Inst PL-00901 Warsaw Poland
nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which... 详细信息
来源: 评论