咨询与建议

限定检索结果

文献类型

  • 13 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 20 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 18 篇 工学
    • 17 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 3 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 网络空间安全
  • 5 篇 医学
    • 4 篇 临床医学
    • 1 篇 公共卫生与预防医...
  • 2 篇 法学
    • 1 篇 法学
    • 1 篇 社会学
  • 2 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 公共管理

主题

  • 20 篇 synthetic image ...
  • 8 篇 diffusion models
  • 7 篇 image forensics
  • 5 篇 deep learning
  • 3 篇 gans
  • 3 篇 deepfake detecti...
  • 2 篇 synthetic images
  • 2 篇 transformers
  • 2 篇 multimedia foren...
  • 2 篇 image generation
  • 2 篇 image coding
  • 2 篇 machine learning
  • 2 篇 media forensics
  • 2 篇 deepfakes
  • 2 篇 computer vision
  • 2 篇 transform coding
  • 2 篇 convolutional ne...
  • 2 篇 digital image fo...
  • 1 篇 gan-face detecti...
  • 1 篇 variational infe...

机构

  • 3 篇 drexel univ phil...
  • 1 篇 vellore institut...
  • 1 篇 univ federico ii...
  • 1 篇 politecn milan d...
  • 1 篇 university of si...
  • 1 篇 inst matematica ...
  • 1 篇 univ pisa inform...
  • 1 篇 inst res fundame...
  • 1 篇 univ patras dept...
  • 1 篇 str hendersonvil...
  • 1 篇 univ paris sacla...
  • 1 篇 italian natl res...
  • 1 篇 inha univ dept c...
  • 1 篇 univ erlangen nu...
  • 1 篇 beijing key lab ...
  • 1 篇 baidu vis people...
  • 1 篇 univ napoli fede...
  • 1 篇 friedrich alexan...
  • 1 篇 indian inst engn...
  • 1 篇 city univ hong k...

作者

  • 2 篇 nguyen tai d.
  • 2 篇 bammey quentin
  • 2 篇 stamm matthew c.
  • 2 篇 riess christian
  • 2 篇 cozzolino davide
  • 2 篇 verdoliva luisa
  • 2 篇 azizpour aref
  • 1 篇 gardella marina
  • 1 篇 vandati danial s...
  • 1 篇 fang shengbang
  • 1 篇 gennaro claudio
  • 1 篇 nagano koki
  • 1 篇 li yanhao
  • 1 篇 marco tanfoni
  • 1 篇 zingarini g.
  • 1 篇 mahmoudi-azanveh...
  • 1 篇 falchi fabrizio
  • 1 篇 he zhijian
  • 1 篇 zingarini giada
  • 1 篇 marco maggini

语言

  • 20 篇 英文
检索条件"主题词=Synthetic Image Detection"
20 条 记 录,以下是1-10 订阅
排序:
Forgery-aware Adaptive Transformer for Generalizable synthetic image detection
Forgery-aware Adaptive Transformer for Generalizable Synthet...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Liu, Huan Tang, Zichang Tan, Chuangchuang Wei, Yunchao Wang, Jingdong Zhao, Yao Beijing Jiaotong Univ Inst Informat Sci Beijing Peoples R China Baidu VIS Beijing Peoples R China Beijing Key Lab Adv Informat Sci & Network Techno Beijing Peoples R China
In this paper, we study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods, e.g., GANs and diffusion models. Cutting-edge solutions start to explore... 详细信息
来源: 评论
Enhancing the Generalization of synthetic image detection Models through the Exploration of Features in Deep detection Models  13
Enhancing the Generalization of Synthetic Image Detection Mo...
收藏 引用
13th Iranian/3rd International Machine Vision and image Processing Conference (MVIP)
作者: Javaheri, Alireza Hajabdollah Motamednia, Hossein Mahmoudi-Azanveh, Ahmad Shahid Beheshti Univ Cyberspace Res Inst Tehran Iran Inst Res Fundamental Sci Sch Comp Sci High Performance Comp Lab Tehran Iran
One of the major challenges of AI is the misuse of images generated by generative models. Advances in this field have reached a point where distinguishing between real and fake images can be impossible for humans and ... 详细信息
来源: 评论
Less is more: A minimalist approach to robust GAN-generated face detection
收藏 引用
PATTERN RECOGNITION LETTERS 2024年 179卷 185-191页
作者: Ghosh, Tanusree Naskar, Ruchira Indian Inst Engn Sci & Technol Dept Informat Technol Sibpur 711103 India
Hyper-realistic images that are not differentiable from authentic images to regular viewers have become extremely easy to generate and highly accessible. Furthermore, the increasing pervasiveness of social media netwo... 详细信息
来源: 评论
Detecting images generated by diffusers
收藏 引用
PEERJ COMPUTER SCIENCE 2024年 10卷 e2127页
作者: Coccomini, Davide Alessandro Esuli, Andrea Falchi, Fabrizio Gennaro, Claudio Amato, Giuseppe Italian Natl Res Council Inst Informat Sci & Technol Alessandro Faedo Pisa Tuscany Italy Univ Pisa Informat Engn Pisa Tuscany Italy
In recent years, the field of artificial intelligence has witnessed a remarkable surge in the generation of synthetic images, driven by advancements in deep learning techniques. These synthetic images, often created t... 详细信息
来源: 评论
Synthbuster: Towards detection of Diffusion Model Generated images
IEEE OPEN JOURNAL OF SIGNAL PROCESSING
收藏 引用
IEEE OPEN JOURNAL OF SIGNAL PROCESSING 2024年 5卷 1-9页
作者: Bammey, Quentin Univ Paris Saclay ENS Paris Saclay CNRS Ctr Borelli F-91190 Gif Sur Yvette France
synthetically-generated images are getting increasingly popular. Diffusion models have advanced to the stage where even non-experts can generate photo-realistic images from a simple text prompt. They expand creative h... 详细信息
来源: 评论
Reliable Out-of-Distribution Recognition of synthetic images
收藏 引用
JOURNAL OF IMAGING 2024年 第5期10卷 110-110页
作者: Maier, Anatol Riess, Christian Univ Erlangen Nurnberg FAU Dept Comp Sci IT Secur Infrastruct Lab D-91058 Erlangen Germany
Generative adversarial networks (GANs) and diffusion models (DMs) have revolutionized the creation of synthetically generated but realistic-looking images. Distinguishing such generated images from real camera capture... 详细信息
来源: 评论
A Comprehensive Exploration on Detecting Fake images Generated by Stable Diffusion  7th
A Comprehensive Exploration on Detecting Fake Images Generat...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Chen, Jingyi Wang, Xiaolong He, Zhijian Peng, Xiaojiang Shenzhen Technol Univ Shenzhen Peoples R China
Diffusion models, particularly Stable Diffusion Models (SDMs), have recently emerged as a focal point within the generative artificial intelligence sector, acclaimed for their superior visual fidelity and versatility.... 详细信息
来源: 评论
Did You Note My Palette? Unveiling synthetic images Through Color Statistics  24
Did You Note My Palette? Unveiling Synthetic Images Through ...
收藏 引用
12th ACM Workshop on Information Hiding and Multimedia Security (IH and MMSec)
作者: Uhlenbrock, Lea Cozzolino, Davide Moussa, Denise Verdoliva, Luisa Riess, Christian Friedrich Alexander Univ Erlangen Nurnberg Erlangen Germany Univ Napoli Federico II Naples Italy
High-quality artificially generated images are widely available now and increasingly realistic, posing challenges for image forensics in distinguishing them from real ones. Unfortunately, building a single detector th... 详细信息
来源: 评论
Beyond Deepfake images: Detecting AI-Generated Videos
Beyond Deepfake Images: Detecting AI-Generated Videos
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Vandati, Danial Samadi Nguyen, Tai D. Azizpour, Aref Stamm, Matthew C. Drexel Univ Philadelphia PA 19104 USA
Recent advances in generative AI have led to the development of techniques to generate visually realistic synthetic video. While a number of techniques have been developed to detect AI-generated synthetic images, in t... 详细信息
来源: 评论
E3: Ensemble of Expert Embedders for Adapting synthetic image Detectors to New Generators Using Limited Data
E3: Ensemble of Expert Embedders for Adapting Synthetic Imag...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Azizpour, Aref Nguyen, Tai D. Shrestha, Manil Xu, Kaidi Kim, Edward Stamm, Matthew C. Drexel Univ Philadelphia PA 19104 USA
As generative AI progresses rapidly, new synthetic image generators continue to emerge at a swift pace. Traditional detection methods face two main challenges in adapting to these generators: the forensic traces of sy... 详细信息
来源: 评论