咨询与建议

限定检索结果

文献类型

  • 18 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 20 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 工学
    • 20 篇 计算机科学与技术...
    • 7 篇 软件工程
    • 2 篇 电气工程
    • 1 篇 信息与通信工程

主题

  • 20 篇 systems for mach...
  • 4 篇 multi-query opti...
  • 3 篇 distributed syst...
  • 2 篇 gradient compres...
  • 2 篇 machine learning
  • 2 篇 recommendation s...
  • 2 篇 incremental view...
  • 2 篇 machine learning...
  • 1 篇 model interpreta...
  • 1 篇 reinforcement le...
  • 1 篇 multi-tenancy in...
  • 1 篇 communication op...
  • 1 篇 machine learning...
  • 1 篇 preemption sched...
  • 1 篇 continual learni...
  • 1 篇 neural networks
  • 1 篇 pipeline paralle...
  • 1 篇 multi-tasking
  • 1 篇 weak supervision
  • 1 篇 model diagnosis

机构

  • 3 篇 stanford univ st...
  • 3 篇 univ calif san d...
  • 2 篇 microsoft res re...
  • 1 篇 univ toronto on
  • 1 篇 seoul natl univ
  • 1 篇 univ texas arlin...
  • 1 篇 tsinghua univ de...
  • 1 篇 amazon web serv ...
  • 1 篇 univ texas austi...
  • 1 篇 google mountain ...
  • 1 篇 bytedance inc cu...
  • 1 篇 samsung elect hw...
  • 1 篇 korea adv inst s...
  • 1 篇 seoul natl univ ...
  • 1 篇 kuaishou technol...
  • 1 篇 univ calif san d...
  • 1 篇 vector inst on
  • 1 篇 nvidia corp sant...
  • 1 篇 mit csail cambri...
  • 1 篇 yonsei univ

作者

  • 4 篇 kumar arun
  • 4 篇 nakandala supun
  • 2 篇 papakonstantinou...
  • 1 篇 wei xingda
  • 1 篇 cui xingqi
  • 1 篇 du kuntai
  • 1 篇 yang tingting
  • 1 篇 pei qiangyu
  • 1 篇 menache ishai
  • 1 篇 saran nitika
  • 1 篇 huang hang
  • 1 篇 han jinbo
  • 1 篇 kwon youngeun
  • 1 篇 crankshaw daniel
  • 1 篇 shu jiwu
  • 1 篇 xu wanhong
  • 1 篇 malkin rob
  • 1 篇 kandula srikanth
  • 1 篇 xu qingxing
  • 1 篇 kim hyung-jin

语言

  • 20 篇 英文
检索条件"主题词=Systems for Machine Learning"
20 条 记 录,以下是1-10 订阅
排序:
HIDL: High-Throughput Deep learning Inference at the Hybrid Mobile Edge
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED systems 2022年 第12期33卷 4499-4514页
作者: Wu, Jing Wang, Lin Pei, Qiangyu Cui, Xingqi Liu, Fangming Yang, Tingting Huazhong Univ Sci & Technol Natl Engn Res Ctr Big Data Technol & Syst Serv Comp Technol & Syst Lab Cluster & Grid Comp LabSch Comp Sci & Technol Wuhan 430074 Peoples R China Vrije Univ Amsterdam NL-1081 HV Amsterdam Netherlands Tech Univ Darmstadt D-64289 Darmstadt Germany Peng Cheng Lab Shenzhen 518066 Peoples R China
Deep neural networks (DNNs) have become a critical component for inference in modem mobile applications, but the efficient provisioning of DNNs is non-trivial. Existing mobile- and server-based approaches compromise e... 详细信息
来源: 评论
Seraph: A Performance-Cost Aware Tuner for Training Reinforcement learning Model on Serverless Computing  24
Seraph: A Performance-Cost Aware Tuner for Training Reinforc...
收藏 引用
15th Asia-Pacific Workshop on systems (APSys)
作者: Han, Jinbo Wei, Xingda Chen, Rong Chen, Haibo Shanghai Jiao Tong Univ Inst Parallel & Distributed Syst SEIEE Shanghai Peoples R China
Training a reinforcement learning model is critical for various AI tasks. However, determining the hardware resources required for training RL models is challenging due to the interaction between the CPU and GPU, and ... 详细信息
来源: 评论
Hidet: Task-Mapping Programming Paradigm for Deep learning Tensor Programs  2023
Hidet: Task-Mapping Programming Paradigm for Deep Learning T...
收藏 引用
28th ACM International Conference on Architectural Support for Programming Languages and Operating systems (ASPLOS)
作者: Ding, Yaoyao Yu, Cody Hao Zheng, Bojian Liu, Yizhi Wang, Yida Pekhimenko, Gennady Univ Toronto Toronto ON Canada Amazon Web Serv Santa Clara CA USA Vector Inst Toronto ON Canada
As deep learning models nowadays are widely adopted by both cloud services and edge devices, reducing the latency of deep learning model inferences becomes crucial to provide efficient model serving. However, it is ch... 详细信息
来源: 评论
Towards a Robust Knowledge Graph-Enabled machine learning Service Description Framework  15
Towards a Robust Knowledge Graph-Enabled Machine Learning Se...
收藏 引用
15th IEEE International Conference on Semantic Computing (ICSC)
作者: Menik, Samiyuru Ramaswamy, Lakshmish Univ Georgia Dept Comp Sci Athens GA 30602 USA
Although machine learning (ML) is widely expected to become a key enabler of innovative applications in a number of important domains, building, deploying and managing robust ML pipelines for diverse domains are very ... 详细信息
来源: 评论
Kraken: Memory-Efficient Continual learning for Large-Scale Real-Time Recommendations
Kraken: Memory-Efficient Continual Learning for Large-Scale ...
收藏 引用
International Conference on High Performance Computing, Networking, Storage and Analysis (SC)
作者: Xie, Minhui Ren, Kai Lu, Youyou Yang, Guangxu Xu, Qingxing Wu, Bihai Lin, Jiazhen Ao, Hongbo Xu, Wanhong Shu, Jiwu Tsinghua Univ Dept Comp Sci & Technol Beijing Peoples R China Kuaishou Technol Beijing Peoples R China
Modern recommendation systems in industry often use deep learning (DL) models that achieve better model accuracy with more data and model parameters. However, current open-source DL frameworks, such as TensorFiow and ... 详细信息
来源: 评论
Nautilus: An Optimized System for Deep Transfer learning over Evolving Training Datasets  22
Nautilus: An Optimized System for Deep Transfer Learning ove...
收藏 引用
International Conference on Management of Data (SIGMOD)
作者: Nakandala, Supun Kumar, Arun Univ Calif San Diego La Jolla CA 92093 USA
Deep learning (DL) has revolutionized unstructured data analytics. But in most cases, DL needs massive labeled datasets and large compute clusters, which hinders its adoption. These limitations can be overcome using a... 详细信息
来源: 评论
Varuna: Scalable, Low-cost Training of Massive Deep learning Models  22
Varuna: Scalable, Low-cost Training of Massive Deep Learning...
收藏 引用
17th European Conference on Computer systems (EuroSys)
作者: Athlur, Sanjith Saran, Nitika Sivathanu, Muthian Ramjee, Ramachandran Kwatra, Nipun Carnegie Mellon Univ Pittsburgh PA 15213 USA Cornell Univ Ithaca NY USA Microsoft Res Bangalore Karnataka India
systems for training massive deep learning models (billions of parameters) today assume and require specialized "hyperclusters": hundreds or thousands of GPUs wired with specialized high-bandwidth interconne... 详细信息
来源: 评论
SOL: Safe On-Node learning in Cloud Platforms  27
SOL: Safe On-Node Learning in Cloud Platforms
收藏 引用
27th ACM International Conference on Architectural Support for Programming Languages and Operating systems (ASPLOS)
作者: Wang, Yawen Crankshaw, Daniel Yadwadkar, Neeraja J. Berger, Daniel Kozyrakis, Christos Bianchini, Ricardo Stanford Univ Stanford CA 94305 USA Microsoft Res Redmond WA USA Univ Texas Austin Austin TX USA
Cloud platforms run many software agents on each server node. These agents manage all aspects of node operation, and in some cases frequently collect data and make decisions. Unfortunately, their behavior is typically... 详细信息
来源: 评论
Layerweaver: Maximizing Resource Utilization of Neural Processing Units via Layer-Wise Scheduling  27
Layerweaver: Maximizing Resource Utilization of Neural Proce...
收藏 引用
27th IEEE International Symposium on High-Performance Computer Architecture (HPCA)
作者: Oh, Young H. Kim, Seonghak Jin, Yunho Son, Sam Bae, Jonghyun Lee, Jongsung Park, Yeonhong Kim, Dong Uk Ham, Tae Jun Lee, Jae W. Sungkyunkwan Univ Dept Elect & Comp Engn Suwon South Korea Seoul Natl Univ Neural Proc Res Ctr NPRC Dept Comp Sci & Engn Seoul South Korea
To meet surging demands for deep learning inference services, many cloud computing vendors employ high-performance specialized accelerators, called neural processing units (NPUs). One important challenge for effective... 详细信息
来源: 评论
Snorkel DryBell: A Case Study in Deploying Weak Supervision at Industrial Scale  19
Snorkel DryBell: A Case Study in Deploying Weak Supervision ...
收藏 引用
ACM SIGMOD International Conference on Management of Data (SIGMOD)
作者: Bach, Stephen H. Rodriguez, Daniel Liu, Yintao Luo, Chong Shao, Haidong Xia, Cassandra Sen, Souvik Ratner, Alex Hancock, Braden Alborzi, Houman Kuchhal, Rahul Re, Chris Malkin, Rob Brown Univ Providence RI 02912 USA Google Mountain View CA 94043 USA Stanford Univ Stanford CA 94305 USA
Labeling training data is one of the most costly bottlenecks in developing machine learning-based applications. We present a first-of-its-kind study showing how existing knowledge resources from across an organization... 详细信息
来源: 评论