咨询与建议

限定检索结果

文献类型

  • 53 篇 会议
  • 39 篇 期刊文献
  • 2 篇 学位论文

馆藏范围

  • 94 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 88 篇 工学
    • 77 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 14 篇 软件工程
    • 10 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 材料科学与工程(可...
    • 1 篇 核科学与技术
    • 1 篇 生物医学工程(可授...
    • 1 篇 网络空间安全
  • 9 篇 医学
    • 9 篇 临床医学
    • 1 篇 特种医学
  • 6 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 5 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 历史学
    • 1 篇 考古学
  • 1 篇 艺术学
    • 1 篇 艺术学理论

主题

  • 94 篇 table detection
  • 19 篇 deep learning
  • 15 篇 table structure ...
  • 12 篇 table recognitio...
  • 10 篇 table extraction
  • 10 篇 document analysi...
  • 10 篇 image processing
  • 7 篇 ocr
  • 7 篇 convolutional ne...
  • 6 篇 object detection
  • 5 篇 tabular data ext...
  • 5 篇 document process...
  • 5 篇 table analysis
  • 5 篇 document image a...
  • 4 篇 faster r-cnn
  • 4 篇 document layout ...
  • 4 篇 deformable convo...
  • 4 篇 page object dete...
  • 3 篇 page segmentatio...
  • 3 篇 structure detect...

机构

  • 4 篇 tech univ kaiser...
  • 4 篇 univ ottawa sch ...
  • 4 篇 tech univ kaiser...
  • 3 篇 lytica inc 308 l...
  • 3 篇 peking univ inst...
  • 3 篇 microsoft res as...
  • 3 篇 german res inst ...
  • 3 篇 lulea univ techn...
  • 2 篇 russian acad sci...
  • 2 篇 shanghai jiao to...
  • 2 篇 german res ctr a...
  • 2 篇 ncai deep learni...
  • 2 篇 nust seecs islam...
  • 2 篇 univ chinese aca...
  • 2 篇 univ kaiserslaut...
  • 1 篇 jsc nc kazmunayg...
  • 1 篇 cas ctr excellen...
  • 1 篇 univ waterloo wa...
  • 1 篇 kunming univ sci...
  • 1 篇 guangzhou civil ...

作者

  • 5 篇 stricker didier
  • 5 篇 kantarci burak
  • 5 篇 simsek murat
  • 4 篇 afzal muhammad z...
  • 4 篇 gao liangcai
  • 3 篇 shafait faisal
  • 3 篇 shigarov alexey
  • 3 篇 kazdar takwa
  • 3 篇 jmal marwa
  • 3 篇 khan shahzad
  • 3 篇 attia rabah
  • 3 篇 shehzadi tahira
  • 3 篇 mikhailov andrey
  • 3 篇 hashmi khurram a...
  • 3 篇 liwicki marcus
  • 2 篇 akgul yusuf sina...
  • 2 篇 li xiao-hui
  • 2 篇 paramonov viache...
  • 2 篇 liu cheng-lin
  • 2 篇 xiao bin

语言

  • 91 篇 英文
  • 2 篇 土耳其文
  • 1 篇 法文
检索条件"主题词=Table Detection"
94 条 记 录,以下是1-10 订阅
排序:
Dual-branch dilated context convolutional for table detection transformer in the document images
收藏 引用
VISUAL COMPUTER 2025年 第4期41卷 2709-2720页
作者: Ni, Ying Wang, Xiaoli Peng, Hanghang Li, Yonzhi Wang, Jinyang Li, Haoxuan Huang, Jin Guotai Asset Management Co Ltd Shanghai Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China State Key Lab New Text Mat & Adv Proc Technol Wuhan Peoples R China
With the increasing automation of document images like financial reports, table detection has become a critical component of document automation. It requires models to extract the position information of tables in doc... 详细信息
来源: 评论
Deep Learning for table detection and Structure Recognition: A Survey
收藏 引用
ACM COMPUTING SURVEYS 2024年 第12期56卷 1-41页
作者: Kasem, Mahmoud salaheldin Abdallah, Abdelrahman Berendeyev, Alexander Elkady, Ebrahem Mahmoud, Mohamed Abdalla, Mahmoud Hamada, Mohamed Vascon, Sebastiano Nurseitov, Daniyar Taj-eddin, Islam Assiut Univ Fac Comp & Informat Assiut Egypt Chungbuk Natl Univ Cheongju South Korea CaFoscari Univ Venice Veneto Italy Satbayev Univ Alma Ata Kazakhstan Informat Technol Inst Alexandria Egypt Int IT Univ Dept Informat Syst Alma Ata Kazakhstan JSC NC KazMunayGas Astana Kazakhstan Assiut Univ Fac Comp & Informat Assiut Egypt
tables are everywhere, from scientific journals, articles, websites, and newspapers all the way to items we buy at the supermarket. Detecting them is thus of utmost importance to automatically understanding the conten... 详细信息
来源: 评论
End-to-end semi-supervised approach with modulated object queries for table detection in documents
收藏 引用
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION 2024年 第3期27卷 363-378页
作者: Ehsan, Iqraa Shehzadi, Tahira Stricker, Didier Afzal, Muhammad Zeshan Tech Univ Kaiserslautern Dept Comp Sci D-67663 Kaiserslautern Germany Tech Univ Kaiserslautern Mindgarage D-67663 Kaiserslautern Germany German Res Inst Artificial Intelligence DFKI Comp Vis D-67663 Kaiserslautern Germany
table detection, a pivotal task in document analysis, aims to precisely recognize and locate tables within document images. Although deep learning has shown remarkable progress in this realm, it typically requires an ... 详细信息
来源: 评论
Pre-training transformer with dual-branch context content module for table detection in document images
收藏 引用
虚拟现实与智能硬件(中英文) 2024年 第5期6卷 408-420页
作者: Yongzhi LI Pengle ZHANG Meng SUN Jin HUANG Ruhan HE School of Computer Science and Artificial Intelligence Wuhan Textile UniversityWuhan 430064China School of Computer Science South-Central Minzu UniversityWuhan 430064China Hubei Provincial Engineering Research Center for Intelligent Textile and Fashion Wuhan Textile UniversityWuhan 430064China
Background Document images such as statistical reports and scientific journals are widely used in information *** detection of table areas in document images is an essential prerequisite for tasks such as information ... 详细信息
来源: 评论
table detection Method Based on Faster-RCNN and Window Attention  12
Table Detection Method Based on Faster-RCNN and Window Atten...
收藏 引用
12th International Conference on Networks, Communication and Computing (ICNCC)
作者: Chen, Han Song, Shengli Su, Rijian Zhengzhou Univ Light Ind Sch Software Zhengzhou Henan Peoples R China Zhengzhou Univ Light Ind Sch Comp Sci & Technol Zhengzhou Henan Peoples R China
As an important carrier of information, tables possess the characteristics of high data storage density, conciseness, and intuitiveness, and are widely applied in offices and daily life. Due to the complexity of table... 详细信息
来源: 评论
Improving table detection for document images using boundary
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2024年 第2期10卷 1703-1714页
作者: Liu, Yingli Zheng, Jianfeng Zhang, Guangtao Shen, Tao Kunming Univ Sci & Technol Fac Informat Engn & Automat Wujiaying St Kunming 650500 Yunnan Peoples R China Kunming Univ Sci & Technol Yunnan Key Lab Comp Technol Applicat Wujiaying St Kunming 650500 Yunnan Peoples R China
Locating tables in document images is the first step to extracting table information, and high location precision is required. The dominant approach of table detection is based on an object detection algorithm, and th... 详细信息
来源: 评论
YOLO-table: disclosure document table detection with involution
收藏 引用
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION 2023年 第1期26卷 1-14页
作者: Zhang, Daqian Mao, Ruibin Guo, Runting Jiang, Yang Zhu, Jing Shenzhen Secur Informat Co Ltd Shenzhen Peoples R China
As financial document automation becomes more general, table detection is receiving more and more attention as an important part of document automation. Disclosure documents contain both bordered and borderless tables... 详细信息
来源: 评论
Towards End-to-End Semi-supervised table detection with Semantic Aligned Matching Transformer  18th
Towards End-to-End Semi-supervised Table Detection with Sema...
收藏 引用
18th International Conference on Document Analysis and Recognition (ICDAR)
作者: Shehzadi, Tahira Sarode, Shalini Stricker, Didier Afzal, Muhammad Zeshan Tech Univ Kaiserslautern Dept Comp Sci D-67663 Kaiserslautern Germany Tech Univ Kaiserslautern Mindgarage D-67663 Kaiserslautern Germany German Res Inst Artificial Intelligence DFKI D-67663 Kaiserslautern Germany
table detection within document images is a crucial task in document processing, involving the identification and localization of tables. Recent strides in deep learning have substantially improved the accuracy of thi... 详细信息
来源: 评论
ClusterTabNet: Supervised Clustering Method for table detection and table Structure Recognition  18th
ClusterTabNet: Supervised Clustering Method for Table Detect...
收藏 引用
18th International Conference on Document Analysis and Recognition (ICDAR)
作者: Polewczyk, Marek Spinaci, Marco SAP Business AI Alpharetta GA 30022 USA
table detection and recognition consists of locating tables within a given document and identifying the exact location of its pieces, such as rows, columns, and headers. We present a novel deep-learning-based method t... 详细信息
来源: 评论
tableSegNet: a fully convolutional network for table detection and segmentation in document images
收藏 引用
INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION 2022年 第1期25卷 1-14页
作者: Nguyen, Duc-Dung VAST Inst Informat Technol Dept Pattern Recognit & Knowledge Engn 18 Hoang Quoc Viet Hanoi 10000 Vietnam
Advances in image object detection lead to applying deep convolution neural networks in the document image analysis domain. Unlike general colorful and pattern-rich objects, tables in document images have properties t... 详细信息
来源: 评论