咨询与建议

限定检索结果

文献类型

  • 53 篇 会议
  • 39 篇 期刊文献

馆藏范围

  • 92 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 88 篇 工学
    • 77 篇 计算机科学与技术...
    • 26 篇 电气工程
    • 13 篇 软件工程
    • 10 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 3 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 材料科学与工程(可...
    • 1 篇 核科学与技术
    • 1 篇 生物医学工程(可授...
    • 1 篇 网络空间安全
  • 9 篇 医学
    • 9 篇 临床医学
    • 1 篇 特种医学
  • 6 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 3 篇 图书情报与档案管...
  • 5 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 地球物理学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 历史学
    • 1 篇 考古学
  • 1 篇 艺术学
    • 1 篇 艺术学理论

主题

  • 92 篇 table detection
  • 19 篇 deep learning
  • 15 篇 table structure ...
  • 12 篇 table recognitio...
  • 10 篇 table extraction
  • 10 篇 document analysi...
  • 9 篇 image processing
  • 7 篇 convolutional ne...
  • 6 篇 object detection
  • 6 篇 ocr
  • 5 篇 tabular data ext...
  • 5 篇 document process...
  • 5 篇 table analysis
  • 5 篇 document image a...
  • 4 篇 faster r-cnn
  • 4 篇 document layout ...
  • 4 篇 deformable convo...
  • 4 篇 page object dete...
  • 3 篇 page segmentatio...
  • 3 篇 structure detect...

机构

  • 5 篇 univ ottawa sch ...
  • 4 篇 tech univ kaiser...
  • 4 篇 tech univ kaiser...
  • 3 篇 lytica inc 308 l...
  • 3 篇 peking univ inst...
  • 3 篇 microsoft res as...
  • 3 篇 german res inst ...
  • 3 篇 lulea univ techn...
  • 2 篇 russian acad sci...
  • 2 篇 shanghai jiao to...
  • 2 篇 german res ctr a...
  • 2 篇 ncai deep learni...
  • 2 篇 nust seecs islam...
  • 2 篇 univ chinese aca...
  • 2 篇 univ kaiserslaut...
  • 1 篇 jsc nc kazmunayg...
  • 1 篇 cas ctr excellen...
  • 1 篇 univ waterloo wa...
  • 1 篇 kunming univ sci...
  • 1 篇 guangzhou civil ...

作者

  • 5 篇 stricker didier
  • 5 篇 kantarci burak
  • 5 篇 simsek murat
  • 4 篇 afzal muhammad z...
  • 4 篇 gao liangcai
  • 3 篇 shafait faisal
  • 3 篇 shigarov alexey
  • 3 篇 kazdar takwa
  • 3 篇 jmal marwa
  • 3 篇 khan shahzad
  • 3 篇 attia rabah
  • 3 篇 shehzadi tahira
  • 3 篇 mikhailov andrey
  • 3 篇 hashmi khurram a...
  • 3 篇 liwicki marcus
  • 2 篇 akgul yusuf sina...
  • 2 篇 li xiao-hui
  • 2 篇 paramonov viache...
  • 2 篇 liu cheng-lin
  • 2 篇 xiao bin

语言

  • 89 篇 英文
  • 2 篇 土耳其文
  • 1 篇 法文
检索条件"主题词=Table Detection"
92 条 记 录,以下是31-40 订阅
排序:
CasTabDetectoRS: Cascade Network for table detection in Document Images with Recursive Feature Pyramid and Switchable Atrous Convolution
收藏 引用
JOURNAL OF IMAGING 2021年 第10期7卷 214-214页
作者: Hashmi, Khurram Azeem Pagani, Alain Liwicki, Marcus Stricker, Didier Afzal, Muhammad Zeshan Tech Univ Kaiserslautern Dept Comp Sci D-67663 Kaiserslautern Germany Tech Univ Kaiserslautern Mindgarage D-67663 Kaiserslautern Germany German Res Inst Artificial Intelligence DFKI D-67663 Kaiserslautern Germany Lulea Univ Technol Dept Comp Sci S-97187 Lulea Sweden
table detection is a preliminary step in extracting reliable information from tables in scanned document images. We present CasTabDetectoRS, a novel end-to-end trainable table detection framework that operates on Casc... 详细信息
来源: 评论
table detection Using Boundary Refining via Corner Locating  2nd
Table Detection Using Boundary Refining via Corner Locating
收藏 引用
2nd Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Sun, Ningning Zhu, Yuanping Hu, Xiaoming Tianjin Normal Univ 393 Binshuixi Rd Tianjin Peoples R China
table detection based on bounding-box method has achieved remarkable results. However, there still exists inaccurate table boundary locating. In this paper, a table detection method is proposed. Firstly, coarse table ... 详细信息
来源: 评论
Cloud Computer Research on table detection Model Based on the DC-LSTM Model
Cloud Computer Research on Table Detection Model Based on th...
收藏 引用
作者: Xingming Zhang Yunchao Bai Naike Wei Huadong Pan Jun Yin ZheJiang Dahua Technology CO. LTD.
In view of the fact that tables are not easy to detect, this paper designs a table detection model based on the DC-LSTM module, which references the Convolutional Long Short-Term Memory(ConvLSTM). The model uses the b... 详细信息
来源: 评论
Feature Engineering meets Deep Learning: A Case Study on table detection in Documents
Feature Engineering meets Deep Learning: A Case Study on Tab...
收藏 引用
APRS International Conference on Digital Image Computing - Techniques and Applications (DICTA)
作者: Shahzad, Muhammad Ali Noor, Rabeya Ahmad, Sheraz Mian, Ajmal Shafait, Faisal NUST SEECS Islamabad Pakistan NCAI Deep Learning Lab Islamabad Pakistan German Res Ctr Artificial Intelligence DFKI Kaiserslautern Germany Univ Western Australia Perth WA Australia
Traditional computer vision approaches heavily relied on hand-crafted features for tasks such as visual object detection and recognition. The recent success of deep learning in automatically extracting representative ... 详细信息
来源: 评论
A Robust table detection Method for Distortion in Image Acquired from Camera  45
A Robust Table Detection Method for Distortion in Image Acqu...
收藏 引用
45th Annual Conference of the IEEE Industrial Electronics Society (IECON)
作者: Nakaigawa, Toshiya Mashiyama, Yoshiki Mitsukura, Yasue Hamada, Nozomu Keio Univ Grad Sch Integrated Design Engn Yokohama Kanagawa Japan Keio Univ Syst Design Engn Yokohama Kanagawa Japan Keio Univ Yokohama Kanagawa Japan
In this paper, the robust table detection method for distortion is proposed in image acquired by camera. Images acquired by the camera contain distortion due to the curvature of the paper and it makes difficult to det... 详细信息
来源: 评论
ICDAR 2019 competition on table detection and recognition (cTDaR)  15
ICDAR 2019 competition on table detection and recognition (c...
收藏 引用
15th IAPR International Conference on Document Analysis and Recognition, ICDAR 2019
作者: Gao, Liangcai Huang, Yilun Dejean, Herve Meunier, Jean-Luc Yan, Qinqin Fang, Yu Kleber, Florian Lang, Eva ICST Peking University China Naver Labs Europe Meylan France State Key Laboratory of Digital Publishing Technology Founder Group Co. LTD. China Computer Vision Lab TU Wien Vienna1040 Austria Archiv des Bistums Passau Passau Germany
The cTDaR competition aims at benchmarking state-of-the-art table detection (TRACK A) and table recognition (TRACK B) methods. In particular, we wish to investigate and compare general methods that can reliably and ro... 详细信息
来源: 评论
table detection in Document Images using Foreground and Background Features
Table Detection in Document Images using Foreground and Back...
收藏 引用
International Conference on Digital Image Computing - Techniques and Applications (DICTA)
作者: Arif, Saman Shafait, Faisal NUST SEECS Islamabad Pakistan NCAI Deep Learning Lab Islamabad Pakistan
table detection is an important step in many document analysis systems. It is a difficult problem due to the variety of table layouts, encoding techniques and the similarity of tabular regions with non-tabular documen... 详细信息
来源: 评论
DeCNT: Deep Deformable CNN for table detection
收藏 引用
IEEE ACCESS 2018年 6卷 74151-74161页
作者: Siddiqui, Shoaib Ahmed Malik, Muhammad Imran Agne, Stefan Dengel, Andreas Ahmed, Sheraz German Res Ctr Artificial Intelligence D-67663 Kaiserslautern Germany Univ Kaiserslautern Dept Comp Sci D-67663 Kaiserslautern Germany Natl Univ Sci & Technol Sch Elect Engn & Comp Sci Islamabad Pakistan
This paper presents a novel approach for the detection of tables present in documents, leveraging the potential of deep neural networks. Conventional approaches for table detection rely on heuristics that are error pr... 详细信息
来源: 评论
Automatic table detection and Retention from Scanned Document Images via Analysis of Structural Information  4
Automatic Table Detection and Retention from Scanned Documen...
收藏 引用
4th International Conference on Image Information Processing (ICIIP)
作者: Ranka, Varsha Patil, Shubham Patni, Shubham Raut, Tushar Mehrotra, Kapil Gupta, Manish Kumar PICT Dept Comp Engn Pune Maharashtra India Ctr Dev Adv Comp Pune Maharashtra India
The problem of automatic table detection has always been a great topic of debate in the field of Document Analysis and Recognition (DAR). Digital documents are efficient than their printed counterparts for storage, ma... 详细信息
来源: 评论
table detection from Slide Images  7th
Table Detection from Slide Images
收藏 引用
7th Pacific-Rim Symposium on Image and Video Technology (PSIVT)
作者: Che, Xiaoyin Yang, Haojin Meinel, Christoph Univ Potsdam Hasso Plattner Inst Prof Dr Helmert Str 2-3 D-14482 Potsdam Germany
In this paper we propose a solution to detect tables from slide images. Presentation slides are one type of document with growing importance. But the layout difference between slides and traditional documents makes ma... 详细信息
来源: 评论