咨询与建议

限定检索结果

文献类型

  • 218 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 264 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 247 篇 工学
    • 147 篇 计算机科学与技术...
    • 52 篇 电气工程
    • 30 篇 控制科学与工程
    • 28 篇 机械工程
    • 19 篇 信息与通信工程
    • 18 篇 石油与天然气工程
    • 17 篇 软件工程
    • 15 篇 动力工程及工程热...
    • 11 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 7 篇 电子科学与技术(可...
    • 7 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 5 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 3 篇 交通运输工程
    • 3 篇 环境科学与工程(可...
    • 2 篇 水利工程
    • 2 篇 船舶与海洋工程
    • 2 篇 生物工程
  • 42 篇 管理学
    • 42 篇 管理科学与工程(可...
  • 29 篇 理学
    • 20 篇 数学
    • 7 篇 化学
    • 4 篇 物理学
    • 4 篇 生物学
    • 4 篇 统计学(可授理学、...
    • 2 篇 系统科学
  • 2 篇 教育学
    • 2 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 2 篇 医学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 艺术学

主题

  • 264 篇 teaching-learnin...
  • 21 篇 optimization
  • 17 篇 multi-objective ...
  • 16 篇 particle swarm o...
  • 12 篇 differential evo...
  • 9 篇 artificial bee c...
  • 9 篇 global optimizat...
  • 7 篇 genetic algorith...
  • 7 篇 artificial neura...
  • 6 篇 machine learning
  • 6 篇 metaheuristic
  • 6 篇 parameter extrac...
  • 5 篇 harmony search
  • 5 篇 evolutionary alg...
  • 5 篇 extreme learning...
  • 5 篇 non-dominated so...
  • 4 篇 energy consumpti...
  • 4 篇 photovoltaic mod...
  • 4 篇 surface roughnes...
  • 4 篇 algorithm

机构

  • 9 篇 huaibei normal u...
  • 6 篇 huazhong univ sc...
  • 6 篇 karadeniz tech u...
  • 6 篇 xian univ techno...
  • 4 篇 sv natl inst tec...
  • 4 篇 karadeniz tech u...
  • 4 篇 natl univ def te...
  • 4 篇 china univ geosc...
  • 4 篇 jiangsu univ sch...
  • 4 篇 shaanxi univ tec...
  • 4 篇 shanghai jiao to...
  • 3 篇 duy tan univ ins...
  • 3 篇 city univ hong k...
  • 3 篇 huazhong univ sc...
  • 3 篇 huaibei normal u...
  • 3 篇 china natl heavy...
  • 3 篇 sv natl inst tec...
  • 3 篇 hong kong polyte...
  • 2 篇 chinese acad sci...
  • 2 篇 natl taiwan univ...

作者

  • 10 篇 zou feng
  • 10 篇 chen debao
  • 6 篇 wang lei
  • 6 篇 dede tayfun
  • 6 篇 zhang chaoyong
  • 5 篇 li shuijia
  • 5 篇 lin wenwen
  • 5 篇 yu kunjie
  • 4 篇 kankal murat
  • 4 篇 uzlu ergun
  • 4 篇 wang zhenlei
  • 4 篇 rao r. v.
  • 4 篇 wang ling
  • 4 篇 xu qingzheng
  • 4 篇 wang xin
  • 4 篇 ma yunpeng
  • 4 篇 hei xinhong
  • 3 篇 rao r. venkata
  • 3 篇 zhang sanqiang
  • 3 篇 zheng siqian

语言

  • 252 篇 英文
  • 8 篇 其他
  • 3 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 荷兰文
检索条件"主题词=Teaching-Learning-Based Optimization"
264 条 记 录,以下是111-120 订阅
排序:
Research on the Mixed H2/H∞ State Feedback Control Parameter Problem based on teaching-learning-based optimization Algorithm  36
Research on the Mixed H2/H∞ State Feedback Control Paramete...
收藏 引用
36th Chinese Control and Decision Conference (CCDC)
作者: Zheng, Liuke Wang, Weihong Beihang Univ Sch Automat Sci & Elect Engn Beijing Peoples R China
Due to the complex principles and design rules of robust controllers, their design has always been a rather difficult problem. To address the difficulty in selecting weight matrix parameters for the reference output i... 详细信息
来源: 评论
A teaching-learning-based optimization Algorithm for the Resource-Constrained Project Scheduling Problem  4th
A Teaching-Learning-Based Optimization Algorithm for the Res...
收藏 引用
4th International Conference on Harmony Search, Soft Computing and Applications (ICHSA)
作者: Joshi, Dheeraj Mittal, M. L. Kumar, Manish Swami Keshvanand Inst Technol Management & Gramot Dept Mech Engn Jaipur Rajasthan India Malaviya Natl Inst Technol Dept Mech Engn Jaipur 302017 Rajasthan India
In this paper, a recently introduced population-based metaheuristic known as teaching-learning-based optimization algorithm (TLBO) is used to find solution for the resource-constrained project scheduling problem (RCPS... 详细信息
来源: 评论
Power System Stability Enhancement with teaching-learning-based optimization  26
Power System Stability Enhancement with Teaching-Learning-Ba...
收藏 引用
26th Iranian Conference on Electrical Engineering (ICEE)
作者: Naghizadeh, Ramezan Ali Azimi, Seyed Mohammad Hamedan Univ Technol Elect Engn Dept Hamadan *** Iran
Modern electric power systems are complex, interconnected and susceptible to low frequency oscillations. Power system stabilizers (PSSs) are used in synchronous generators to damp out these oscillations and prevent in... 详细信息
来源: 评论
A teaching-learning-based optimization with Uniform Design for Solving Constrained optimization Problems  13
A Teaching-Learning-based Optimization with Uniform Design f...
收藏 引用
13th International Conference on Computational Intelligence and Security (CIS)
作者: Jia, Liping Li, Zhonghua Leshan Normal Univ Coll Math & Informat Sci Leshan 614000 Peoples R China Leshan Normal Univ Coll Comp Sci Leshan 614000 Peoples R China
As a newly developed population-based metaheuristic algorithm, teaching-learning-based optimization (TBLO) has been gained extensively attention since it was proposed in 2011. It has been applied to many optimal probl... 详细信息
来源: 评论
Optimized Path Planning for Three-Wheeled Autonomous Robot Using teaching-learning-based optimization Technique  1
收藏 引用
International Conference on Advances in Materials and Manufacturing Engineering (ICAMME)
作者: Kashyap, Abhishek K. Pandey, Anish KIIT Deemed Be Univ Sch Mech Engn Bhubaneswar 751024 India
Path planning is a leading topic in the field of the wheeled robot (WR). Three basic characteristic path planning should have when the WR is traveling toward the goal: (1) obtain information about the given working sp... 详细信息
来源: 评论
optimization of job shop scheduling problems using teaching-learning-based optimization algorithm
收藏 引用
OPSEARCH 2014年 第4期51卷 545-561页
作者: Keesari, H. S. Rao, R. V. SV Natl Inst Technol Dept Mech Engn Surat 395007 Gujarat India
A job shop scheduling problem is one of the most difficult NP hard combinatorial optimization problems. In a job shop scheduling problem (JSSP), there are n jobs that should be processed on m machines. Each job consis... 详细信息
来源: 评论
An improved teaching-learning-based optimization  37
An improved teaching-learning-based optimization
收藏 引用
37th Chinese Control Conference (CCC)
作者: Hou, Jie Ren, Ziwu Lu, Pan Zhang, Kunting Soochow Univ Robot & Microsyst Ctr Jiangsu Prov Key Lab Adv Robot Suzhou 215021 Peoples R China Soochow Univ Collaborat Innovat Ctr Suzhou Nano Sci & Technol Suzhou 215021 Peoples R China
teaching-learning-based optimization(TLBO) is a new proposed heuristic algorithm for optimization applications in recent years. In this paper, an improved TLBO algorithm (ITLBO) is presented. In the teacher phase, the... 详细信息
来源: 评论
ABC-TLBO: A Hybrid Algorithm based on Artificial Bee Colony and teaching-learning-based optimization  37
ABC-TLBO: A Hybrid Algorithm Based on Artificial Bee Colony ...
收藏 引用
37th Chinese Control Conference (CCC)
作者: Zhang, Mei Pan, Yuchong Zhu, Jinhui Chen, Guangsen South China Univ Technol Sch Automat Sci & Engn Guangzhou 510640 Guangdong Peoples R China South China Univ Technol Sch Software Engn Guangzhou 510640 Guangdong Peoples R China
Artificial bee colony (ABC) is shown to be effective in solving optimization problems because of its good exploration capability. However it suffers from poor exploitation because onlooker bees use the same searching ... 详细信息
来源: 评论
Surrogate-assisted teaching-learning-based optimization for high-dimensional and computationally expensive problems
收藏 引用
APPLIED SOFT COMPUTING 2021年 99卷 106934-106934页
作者: Dong, Huachao Wang, Peng Yu, Xinkai Song, Baowei Northwestern Polytech Univ Sch Marine Sci & Technol Xian 710072 Peoples R China
In this work, a surrogate-assisted teaching-learning-based optimization algorithm is presented for high-dimensional and computationally expensive black-box optimization problems. In the presented method, a two-phase s... 详细信息
来源: 评论
Hybrid teaching-learning-based optimization and neural network algorithm for engineering design optimization problems
收藏 引用
KNOWLEDGE-based SYSTEMS 2020年 187卷 104836-000页
作者: Zhang, Yiying Jin, Zhigang Chen, Ye Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Hainan Univ Coll Appl Sci & Technol Haikou 570228 Hainan Peoples R China
Neural network algorithm (NNA) is one of the newest meta-heuristic algorithms, which is inspired by biological nervous systems and artificial neural networks. Benefiting from the unique structure of artificial neural ... 详细信息
来源: 评论