咨询与建议

限定检索结果

文献类型

  • 219 篇 期刊文献
  • 46 篇 会议

馆藏范围

  • 265 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 248 篇 工学
    • 147 篇 计算机科学与技术...
    • 52 篇 电气工程
    • 30 篇 控制科学与工程
    • 28 篇 机械工程
    • 19 篇 信息与通信工程
    • 18 篇 石油与天然气工程
    • 17 篇 软件工程
    • 15 篇 动力工程及工程热...
    • 11 篇 土木工程
    • 7 篇 力学(可授工学、理...
    • 7 篇 电子科学与技术(可...
    • 7 篇 化学工程与技术
    • 6 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 5 篇 建筑学
    • 3 篇 交通运输工程
    • 3 篇 环境科学与工程(可...
    • 2 篇 水利工程
    • 2 篇 船舶与海洋工程
    • 2 篇 生物工程
  • 42 篇 管理学
    • 42 篇 管理科学与工程(可...
  • 30 篇 理学
    • 20 篇 数学
    • 8 篇 化学
    • 5 篇 物理学
    • 4 篇 生物学
    • 4 篇 统计学(可授理学、...
    • 2 篇 系统科学
  • 2 篇 教育学
    • 2 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 2 篇 医学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 艺术学

主题

  • 265 篇 teaching-learnin...
  • 21 篇 optimization
  • 17 篇 multi-objective ...
  • 16 篇 particle swarm o...
  • 13 篇 differential evo...
  • 10 篇 artificial bee c...
  • 9 篇 global optimizat...
  • 7 篇 genetic algorith...
  • 7 篇 artificial neura...
  • 6 篇 machine learning
  • 6 篇 metaheuristic
  • 6 篇 parameter extrac...
  • 5 篇 harmony search
  • 5 篇 evolutionary alg...
  • 5 篇 extreme learning...
  • 5 篇 non-dominated so...
  • 4 篇 energy consumpti...
  • 4 篇 photovoltaic mod...
  • 4 篇 surface roughnes...
  • 4 篇 algorithm

机构

  • 9 篇 huaibei normal u...
  • 6 篇 huazhong univ sc...
  • 6 篇 karadeniz tech u...
  • 6 篇 xian univ techno...
  • 4 篇 sv natl inst tec...
  • 4 篇 karadeniz tech u...
  • 4 篇 natl univ def te...
  • 4 篇 china univ geosc...
  • 4 篇 jiangsu univ sch...
  • 4 篇 shaanxi univ tec...
  • 4 篇 shanghai jiao to...
  • 3 篇 duy tan univ ins...
  • 3 篇 city univ hong k...
  • 3 篇 huazhong univ sc...
  • 3 篇 huaibei normal u...
  • 3 篇 china natl heavy...
  • 3 篇 sv natl inst tec...
  • 3 篇 hong kong polyte...
  • 2 篇 chinese acad sci...
  • 2 篇 natl taiwan univ...

作者

  • 10 篇 zou feng
  • 10 篇 chen debao
  • 6 篇 wang lei
  • 6 篇 dede tayfun
  • 6 篇 zhang chaoyong
  • 5 篇 li shuijia
  • 5 篇 lin wenwen
  • 5 篇 yu kunjie
  • 4 篇 kankal murat
  • 4 篇 uzlu ergun
  • 4 篇 wang zhenlei
  • 4 篇 rao r. v.
  • 4 篇 wang ling
  • 4 篇 xu qingzheng
  • 4 篇 wang xin
  • 4 篇 ma yunpeng
  • 4 篇 hei xinhong
  • 3 篇 rao r. venkata
  • 3 篇 zhang sanqiang
  • 3 篇 zheng siqian

语言

  • 253 篇 英文
  • 8 篇 其他
  • 3 篇 中文
  • 2 篇 德文
  • 2 篇 法文
  • 1 篇 荷兰文
检索条件"主题词=Teaching-Learning-Based Optimization"
265 条 记 录,以下是11-20 订阅
排序:
A Hybrid Two-Stage teaching-learning-based optimization Algorithm for Feature Selection in Bioinformatics
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023年 第3期20卷 1746-1760页
作者: Kang, Yan Wang, Haining Pu, Bin Tao, Liu Chen, Jianguo Yu, Philip S. Yunnan Univ Natl Pilot Sch Software Kunming 650106 Peoples R China Hunan Univ Coll Comp Sci & Elect Engn Changsha 410082 Peoples R China Sun Yat Sen Univ Sch Software Engn Guangzhou 510275 Peoples R China Univ Illinois Dept Comp Sci Chicago IL 60607 USA Tsinghua Univ Inst Data Sci Beijing 100084 Peoples R China
The "curse of dimensionality" brings new challenges to the feature selection (FS) problem, especially in bioinformatics filed. In this paper, we propose a hybrid Two-Stage teaching-learning-based Optimizatio... 详细信息
来源: 评论
Improved teaching-learning-based optimization algorithm based on fusion difference mutation
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023年 第3期44卷 4643-4651页
作者: Liang, Shaohui Wei, Botao Xian Univ Sci & Technol Sch Sci Dept Math Xian 710054 Peoples R China
teaching-learning-based optimization algorithm (TLBO) is a swarm intelligence optimization algorithm that simulates classroom teaching phenomenon. In order to solve the problem that TLBO algorithm is easy to fall into... 详细信息
来源: 评论
Minimizing cycle time and energy consumption for a multi-degree serial manipulator using teaching-learning-based optimization
收藏 引用
JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING 2023年 第5期45卷 1-12页
作者: Shinde, V. B. Pawar, P. J. Savitribai Phule Pune Univ KK Wagh Inst Engn Educ & Res Dept Prod Engn Pune 422003 Maharashtra India Savitribai Phule Pune Univ Amrutvahini Coll Engn Dept Prod Engn Pune 422608 Maharashtra India
Multiple inverse kinematic solutions are obtained for a multi-degree serial manipulator. Each solution provides a different cycle time and energy consumed to perform a given task in a particular sequence. Improper sel... 详细信息
来源: 评论
Effective hybridization of JAYA and teaching-learning-based optimization algorithms for numerical function optimization
收藏 引用
SOFT COMPUTING 2023年 第14期27卷 9673-9691页
作者: Gholami, Jafar Nia, Fariba Abbasi Sanatifar, Maryam Zawbaa, Hossam M. Islamic Azad Univ Dept Comp Engn Kermanshah Sci & Res Branch Kermanshah Iran Beni Suef Univ Fac Comp & Artificial Intelligence Bani Suwayf Egypt Appl Sci Private Univ Appl Sci Res Ctr Amman Jordan
The JAYA is classified as the state-of-the-art population-oriented algorithm for the optimization of diverse problems, both discrete and continuous. The concept behind this algorithm is to present a solution by means ... 详细信息
来源: 评论
Hybrid teaching-learning-based optimization for Workflow Scheduling in Cloud Environment
收藏 引用
IEEE ACCESS 2023年 11卷 100755-100768页
作者: He, Jieguang Liu, Xiaoli Guangdong Univ Petrochem Technol Coll Comp Sci Maoming 525011 Peoples R China
At present, workflow scheduling in cloud computing environment is still a challenging optimization topic due to its NP-complete characteristics. In order to obtain better scheduling results, researchers are constantly... 详细信息
来源: 评论
Group-individual multi-mode cooperative teaching-learning-based optimization algorithm and an industrial engineering application
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2023年 第3期44卷 5437-5465页
作者: Chen, Zhixiang Sun Yat Sen Univ Sch Business Dept Management Sci 135 West Xingang Rd Guangzhou 510275 Peoples R China
This paper modifies the original teaching-learning-based optimization (TLBO) algorithm to present a novel Group-Individual Multi-Mode Cooperative teaching-learning-based optimization (CTLBO) algorithm. This algorithm ... 详细信息
来源: 评论
Multi-population cooperative teaching-learning-based optimization for nonlinear equation systems
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2023年 第6期9卷 6593-6609页
作者: Liao, Zuowen Li, Shuijia Gong, Wenyin Gu, Qiong Beibu Gulf Univ Beibu Gulf Ocean Dev Res Ctr Qinzhou 535000 Peoples R China China Univ Geosci Sch Comp Sci Wuhan 430074 Peoples R China Hubei Univ Arts & Sci Sch Comp Engn Xiangyang 441053 Peoples R China Beibu Gulf Univ Educ Dept Guangxi Zhuang Autonomous Reg Key Lab Beibu Gulf Offshore Engn Equipment & Techn Qinzhou 535011 Peoples R China
Solving nonlinear equation systems (NESs) requires locating different roots in one run. To effectively deal with NESs, a multi-population cooperative teaching-learning-based optimization, named MCTLBO, is presented. T... 详细信息
来源: 评论
Renewables based dynamic cost-effective optimal scheduling of distributed generators using teaching-learning-based optimization
收藏 引用
INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT 2023年 第SUPPL 1期14卷 353-373页
作者: Pinninti, Swarupa Sura, Srinivasa Rao GITAM Deemed be Univ Dept Elect Elect & Commun Engn Visakhapatnam India
Distributed generators (DGs) which may be both renewable energy sources (RES) or conventional fossil fueled generators must be optimally scheduled so as to reduce the generation cost of a power network at the end of t... 详细信息
来源: 评论
Research on the Mixed H2/H∞ State Feedback Control Parameter Problem based on teaching-learning-based optimization Algorithm  36
Research on the Mixed H2/H∞ State Feedback Control Paramete...
收藏 引用
36th Chinese Control and Decision Conference (CCDC)
作者: Zheng, Liuke Wang, Weihong Beihang Univ Sch Automat Sci & Elect Engn Beijing Peoples R China
Due to the complex principles and design rules of robust controllers, their design has always been a rather difficult problem. To address the difficulty in selecting weight matrix parameters for the reference output i... 详细信息
来源: 评论
Multifactorial teaching-learning-based optimization with the diversity and triangle cooperation mechanism
收藏 引用
APPLIED INTELLIGENCE 2022年 第14期52卷 16512-16531页
作者: Li, Wei Fan, Yaochi Wang, Lei Jiang, Qiaoyong Xu, Qingzheng Xian Univ Technol Sch Comp Sci & Engn Xian Peoples R China Shaanxi Key Lab Network Comp & Secur Technol Xian Peoples R China Natl Univ Def Technol Coll Informat & Commun Xian Peoples R China
Multifactorial optimization (MFO) is a newly developed optimization framework that can be embedded with an evolutionary algorithm to solve multiple optimization tasks simultaneously. To further explore the generality ... 详细信息
来源: 评论