咨询与建议

限定检索结果

文献类型

  • 44 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 55 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 46 篇 工学
    • 26 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 7 篇 软件工程
    • 6 篇 信息与通信工程
    • 5 篇 电子科学与技术(可...
    • 2 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 测绘科学与技术
  • 22 篇 理学
    • 17 篇 数学
    • 7 篇 物理学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 9 篇 医学
    • 8 篇 临床医学
    • 1 篇 特种医学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 55 篇 tensor singular ...
  • 9 篇 tensor robust pr...
  • 8 篇 tensor completio...
  • 6 篇 tensor nuclear n...
  • 5 篇 singular value d...
  • 4 篇 block tensor
  • 4 篇 low-rank tensor ...
  • 4 篇 tensors
  • 4 篇 low-rank
  • 4 篇 alternating dire...
  • 4 篇 low-rank tensor ...
  • 4 篇 low rank tensor ...
  • 4 篇 principal compon...
  • 3 篇 image recovery
  • 3 篇 robust tensor pr...
  • 3 篇 tensor principal...
  • 3 篇 matrix decomposi...
  • 2 篇 sparse matrices
  • 2 篇 low-rank tensor ...
  • 2 篇 convex functions

机构

  • 3 篇 southwest univ s...
  • 2 篇 south dakota min...
  • 2 篇 yunnan univ sch ...
  • 2 篇 kash inst elect ...
  • 2 篇 changsha univ sc...
  • 2 篇 southwest univ c...
  • 2 篇 univ elect sci &...
  • 2 篇 southwestern uni...
  • 2 篇 univ essex sch c...
  • 1 篇 north minzu univ...
  • 1 篇 texas tech univ ...
  • 1 篇 agcy sci technol...
  • 1 篇 taiyuan normal u...
  • 1 篇 univ north carol...
  • 1 篇 zhongyuan univ t...
  • 1 篇 south dakota min...
  • 1 篇 cuny coll staten...
  • 1 篇 yunnan univ yunn...
  • 1 篇 hebei univ techn...
  • 1 篇 southern univ sc...

作者

  • 6 篇 liu yipeng
  • 6 篇 zhu ce
  • 5 篇 chen longxi
  • 3 篇 caudle kyle
  • 3 篇 wang jianjun
  • 3 篇 ozdemir cagri
  • 3 篇 he jingfei
  • 3 篇 zhang feng
  • 3 篇 hoover randy c.
  • 2 篇 ng michael k.
  • 2 篇 wang wendong
  • 2 篇 chen xi
  • 2 篇 sun weize
  • 2 篇 zhou yatong
  • 2 篇 song yun
  • 2 篇 wu fengsheng
  • 2 篇 jiang tai-xiang
  • 2 篇 yang kun
  • 2 篇 li chaoqian
  • 2 篇 li yaotang

语言

  • 55 篇 英文
检索条件"主题词=Tensor singular value decomposition"
55 条 记 录,以下是1-10 订阅
排序:
Low-rank tensor singular value decomposition model for hyperspectral image super-resolution
收藏 引用
JOURNAL OF ELECTRONIC IMAGING 2020年 第4期29卷
作者: Zou, Changzhong Huang, Xusheng Fuzhou Univ Coll Math & Comp Sci Fuzhou Peoples R China
We propose a method for hyperspectral image (HSI) super-resolution by designing a tensor singular value decomposition (t-SVD) and three-dimensional total variation (3D-TV) regularization terms. The super-resolution me... 详细信息
来源: 评论
A Randomized Algorithm for tensor singular value decomposition Using an Arbitrary Number of Passes
收藏 引用
JOURNAL OF SCIENTIFIC COMPUTING 2024年 第1期98卷 1-25页
作者: Ahmadi-Asl, Salman Phan, Anh-Huy Cichocki, Andrzej Skolkovo Inst Sci & Technol Ctr Artificial Intelligence Technol Moscow Russia Polish Acad Sci Syst Res Inst Warsaw Poland
Efficient and fast computation of a tensor singular value decomposition (t-SVD) with a few passes over the underlying data tensor is crucial because of its many potential applications. The current/existing subspace ra... 详细信息
来源: 评论
Low-rank plus sparse joint smoothing model based on tensor singular value decomposition for dynamic MRI reconstruction
收藏 引用
MAGNETIC RESONANCE IMAGING 2023年 104卷 1-9页
作者: Liu, Xiaotong He, Jingfei Mi, Chenghu Zhang, Xiaoyue Hebei Univ Technol Sch Elect & Informat Engn Tianjin Key Lab Elect Mat & Devices 340 Xiping Rd Tianjin 300401 Peoples R China Hebei Univ Technol Sch Elect & Informat Engn 340 Xiping Rd Tianjin 300401 Peoples R China
Dynamic magnetic resonance imaging (DMRI) is an important medical imaging modality, but the long imaging time limits its practical applications. This paper proposes a low-rank plus sparse joint smoothing model based o... 详细信息
来源: 评论
Fast tensor singular value decomposition Using the Low-Resolution Features of tensors  20
Fast Tensor Singular Value Decomposition Using the Low-Resol...
收藏 引用
20th IEEE International Conference on Machine Learning and Applications (ICMLA)
作者: Ozdemir, Cagri Hoover, Randy C. Caudle, Kyle South Dakota Mines Dept Comp Sci & Engn Rapid City SD 57701 USA South Dakota Mines Dept Math Rapid City SD USA
The tensor singular value decomposition (t-SVD) based on an algebra of circulants is an effective multilinear subspace learning technique for dimensionality reduction and data classification. Unfortunately, the comput... 详细信息
来源: 评论
Quantum tensor singular value decomposition
收藏 引用
JOURNAL OF PHYSICS COMMUNICATIONS 2021年 第7期5卷
作者: Wang, Xiaoqiang Gu, Lejia Lee, Heung-wing Zhang, Guofeng Hong Kong Polytech Univ Dept Appl Math Hong Kong Peoples R China
tensors are increasingly ubiquitous in various areas of applied mathematics and computing, and tensor decompositions are of practical significance and benefit many applications in data completion, image processing, co... 详细信息
来源: 评论
Low-rank tensor recovery based on nonconvex logarithmic regularization factor
收藏 引用
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING 2025年
作者: Li, Shuo Gao, Yi Zhu, Xiaolong North Minzu Univ Sch Math & Informat Sci Yinchuan 750021 Ningxia Peoples R China
This paper studies the low-rank tensor recovery (LRTR) problem under the framework of tensor singular value decomposition (t-SVD). The t-SVD avoids the inherent information loss associated with tensor matricization. C... 详细信息
来源: 评论
Fast tensor robust principal component analysis with estimated multi-rank and Riemannian optimization
收藏 引用
APPLIED INTELLIGENCE 2025年 第1期55卷 1-16页
作者: Zhu, Qile Wu, Shiqian Fang, Shun Wu, Qi Xie, Shoulie Agaian, Sos Wuhan Univ Sci & Technol Sch Informat Sci & Engn Wuhan 430000 Peoples R China Henan Acad Sci Inst Adv Displays & Imaging Zhengzhou 450000 Peoples R China Jiangxi Univ Finance & Econ Sch Informat Management Nanchang 330000 Peoples R China Agcy Sci Technol & Res Inst Infocomm Res Singapore 138632 Singapore CUNY Grad Ctr New York NY 10314 USA CUNY Coll Staten Isl New York NY 10314 USA
Motivated by the fact that tensor robust principal component analysis (TRPCA) and its variants do not utilize the actual rank value, which limits the recovery performance, and their computational costs are always monu... 详细信息
来源: 评论
Adaptive sampling with tensor leverage scores for exact low-rank third-order tensor completion
收藏 引用
APPLIED MATHEMATICAL MODELLING 2025年 138卷
作者: Chen, Xuan Jiang, Tai-Xiang Hu, Yexun Yu, Jinjin Ng, Michael K. Southwestern Univ Finance & Econ Sch Comp & Artificial Intelligence Chengdu Peoples R China Kash Inst Elect & Informat Ind Kashi Peoples R China Minist Educ Engn Res Ctr Intelligent Finance Chengdu Peoples R China Hong Kong Baptist Univ Dept Math Hong Kong Peoples R China
tensor completion aims at estimating the missing entries from the incomplete observation. Under the tensor singular value decomposition framework, the exact recovery of a low-tubal-rank third- order tensor could be ac... 详细信息
来源: 评论
Learning amore compact representation for low-rank tensor completion
收藏 引用
NEUROCOMPUTING 2025年 617卷
作者: Li, Xi-Zhuo Jiang, Tai-Xiang Yang, Liqiao Liu, Guisong Southwestern Univ Finance & Econ Sch Comp & Artificial Intelligence Chengdu Sichuan Peoples R China Kash Inst Elect & Informat Ind Kashi Peoples R China Southwestern Univ Finance & Econ Engn Res Ctr Intelligent Finance Minist Educ Chengdu Sichuan Peoples R China
Transform-based tensor nuclear norm (TNN) methods have gained considerable attention for their effectiveness in addressing tensor recovery challenges. The integration of deep neural networks as nonlinear transforms ha... 详细信息
来源: 评论
tensor neural network models for tensor singular value decompositions
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2020年 第3期75卷 753-777页
作者: Wang, Xuezhong Che, Maolin Wei, Yimin Hexi Univ Sch Math & Stat Zhangye 734000 Peoples R China Southwest Univ Finance & Econ Sch Econ Math Chengdu 611130 Peoples R China Fudan Univ Sch Math Sci Shanghai 200433 Peoples R China Fudan Univ Shanghai Key Lab Contemporary Appl Math Shanghai 200433 Peoples R China
tensor decompositions have become increasingly prevalent in recent years. Traditionally, tensors are represented or decomposed as a sum of rank-one outer products using either the CANDECOMP/PARAFAC, the Tucker model, ... 详细信息
来源: 评论