咨询与建议

限定检索结果

文献类型

  • 16 篇 期刊文献
  • 10 篇 会议

馆藏范围

  • 26 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 26 篇 工学
    • 22 篇 计算机科学与技术...
    • 10 篇 电气工程
    • 3 篇 信息与通信工程
    • 2 篇 仪器科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 理学
    • 2 篇 化学
    • 2 篇 生物学

主题

  • 26 篇 text document cl...
  • 4 篇 swarm intelligen...
  • 2 篇 similarity
  • 2 篇 optimization
  • 2 篇 krill herd algor...
  • 2 篇 particle swarm o...
  • 2 篇 k-means
  • 2 篇 social spider op...
  • 2 篇 k-means clusteri...
  • 2 篇 unsupervised cla...
  • 2 篇 ontology
  • 1 篇 optimization pro...
  • 1 篇 term dependency
  • 1 篇 particle swarm o...
  • 1 篇 arithmetic optim...
  • 1 篇 hypernymy
  • 1 篇 differential evo...
  • 1 篇 crossover
  • 1 篇 metaheuristics
  • 1 篇 noun phrase

机构

  • 2 篇 hassan ii univ l...
  • 2 篇 univ sains malay...
  • 2 篇 zarqa univ dept ...
  • 2 篇 kookmin univ dep...
  • 2 篇 nit dept comp ap...
  • 1 篇 jawaharlal nehru...
  • 1 篇 kookmin univ col...
  • 1 篇 hassan ii univ r...
  • 1 篇 univ sains malay...
  • 1 篇 al balqa appl un...
  • 1 篇 univ arizona kar...
  • 1 篇 umm al qura univ...
  • 1 篇 yu dept comp sci...
  • 1 篇 deakin univ ctr ...
  • 1 篇 seoul natl univ ...
  • 1 篇 inria sophia ant...
  • 1 篇 jntua coll engn ...
  • 1 篇 int inst informa...
  • 1 篇 indian inst tech...
  • 1 篇 al balqa appl un...

作者

  • 4 篇 abualigah laith ...
  • 3 篇 khader ahamad ta...
  • 3 篇 al-betar mohamme...
  • 2 篇 bharati k. f.
  • 2 篇 louhdi mohammed ...
  • 2 篇 janet b.
  • 2 篇 behja hicham
  • 2 篇 chabih oussama
  • 2 篇 hanandeh essam s...
  • 2 篇 sbai sara
  • 2 篇 venkanna gugulot...
  • 2 篇 reddy a. v.
  • 2 篇 choi eunmi
  • 2 篇 selvaraj suganya
  • 2 篇 chandran t. ravi
  • 1 篇 abdullah-al-wadu...
  • 1 篇 makhadmeh sharif...
  • 1 篇 chen hc
  • 1 篇 ailem melissa
  • 1 篇 pudi vikram

语言

  • 26 篇 英文
检索条件"主题词=Text document clustering"
26 条 记 录,以下是1-10 订阅
排序:
Improved Meta-Heuristic Model for text document clustering by Adaptive Weighted Similarity
收藏 引用
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS 2023年 第5期31卷 749-771页
作者: Venkanna, Gugulothu Bharati, K. F. Sreenidhi Inst Sci & Technol JNTUA Ananthapuramu Dept Comp Sci & Engn Hyderabad 501301 India JNTUA Coll Engn Autonomous Dept Comp Sci & Engn Ananthapuramu Sir Mokshagundam Vishveshwariah Rd Anantapur 515002 Andhra Pradesh India
This paper intends to develop a novel framework for text document clustering with the aid of a new improved meta-heuristic algorithm. Initially, the features are selected from the text document by subjecting each word... 详细信息
来源: 评论
Bare-Bones Based Salp Swarm Algorithm for text document clustering
收藏 引用
IEEE ACCESS 2023年 11卷 100010-100028页
作者: Al-Betar, Mohammed Azmi Abasi, Ammar Kamal Al-Naymat, Ghazi Arshad, Kamran Makhadmeh, Sharif Naser Ajman Univ Dept Informat Technol Coll Engn & Informat Technol Ajman U Arab Emirates Ajman Univ Artificial Intelligence Res Ctr AIRC Ajman U Arab Emirates Al Balqa Appl Univ Al Huson Univ Coll Dept Informat Technol Irbid 19117 Jordan Mohamed Bin Zayed Univ Artificial Intelligence MBZ Machine Learning Dept Dept Informat Technol Abu Dhabi U Arab Emirates Univ Petra Dept Data Sci & Artificial Intelligence Amman 11196 Jordan
text document clustering (TDC) is a challenging optimization problem in unsupervised machine learning and text mining. The Salp Swarm Algorithm (SSA) has been found to be effective in solving complex optimization prob... 详细信息
来源: 评论
text document clustering Using Modified Particle Swarm Optimization with k-means Model
收藏 引用
INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS 2024年 第1期33卷 2350061-2350061页
作者: Dodda, Ratnam Babu, A. Suresh Jawaharlal Nehru Technol Univ Dept Comp Sci & Engn Anantapur India
In the present digital era, vast amounts of data are generated by millions of Internet users in the form of unstructured text documents. The clustering and organizing of text documents play a crucial role in the appli... 详细信息
来源: 评论
Dynamic evolutionary data and text document clustering approach using improved Aquila optimizer based arithmetic optimization algorithm and differential evolution
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2022年 第23期34卷 20939-20971页
作者: Abualigah, Laith Almotairi, Khaled H. Al Ahliyya Amman Univ Hourani Ctr Appl Sci Res Amman 19328 Jordan Middle East Univ Fac Informat Technol Amman 11831 Jordan Umm Al Qura Univ Comp & Informat Syst Coll Comp Engn Dept Mecca 21955 Saudi Arabia
Data and text clustering are popular and frequently used in the data mining domain, mainly to deal with big data analytics. The main problem in these techniques is finding the most coherent clusters allocating similar... 详细信息
来源: 评论
KH-FC: krill herd-based fractional calculus algorithm for text document clustering using MapReduce structure
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING 2022年 第6期25卷 668-684页
作者: More, Priyanka Shivaprasad Saini, Baljit Singh Lovely Profess Univ Sch Comp Sci & Engn Phagwara Punjab India
In this paper, krill herd-based fractional calculus (KH-FC) using MapReduce framework is proposed for effective text document clustering. Here, the stop word removal and stemming model is applied in the pre-processing... 详细信息
来源: 评论
Optimal text document clustering Enabled by Weighed Similarity Oriented Jaya With Grey Wolf Optimization Algorithm
收藏 引用
COMPUTER JOURNAL 2021年 第6期64卷 960-972页
作者: Venkanna, Gugulothu Bharati, K. F. Jawaharlal Nehru Technol Univ Dept Comp Sci & Engn Anantapur 515002 Andhra Pradesh India Jawaharlal Nehru Technol Univ Anantapur 515002 Andhra Pradesh India
Owing to scientific development, a variety of challenges present in the field of information retrieval. These challenges are because of the increased usage of large volumes of data. These huge amounts of data are pres... 详细信息
来源: 评论
Dynamic Sub-Swarm Approach of PSO Algorithms for text document clustering
收藏 引用
SENSORS 2022年 第24期22卷 9653页
作者: Selvaraj, Suganya Choi, Eunmi Kookmin Univ Dept Financial Informat Secur Seoul 02707 South Korea Kookmin Univ Coll Comp Sci Dept Software Seoul 02707 South Korea Seoul Natl Univ SNU Future Innovat Inst Siheung Campus Shihung 15011 South Korea
text document clustering is one of the data mining techniques used in many real-world applications such as information retrieval from IoT Sensors data, duplicate content detection, and document organization. Swarm int... 详细信息
来源: 评论
A Grey Wolf Optimizer for text document clustering
收藏 引用
JOURNAL OF INTELLIGENT SYSTEMS 2020年 第1期29卷 814-830页
作者: Rashaideh, Hasan Sawaie, Ahmad Al-Betar, Mohammed Azmi Abualigah, Laith Mohammad Al-laham, Mohammad M. Al-Khatib, Ra'ed M. Braik, Malik Al Balqa Appl Univ BAU PABG Fac Informat Technol Comp Sci Dept POB 19117 Salt Jordan Al Balqa Appl Univ BAU Dept Informat Technol Al Huson Univ Coll POB 50 Irbid Jordan Amman Arab Univ Fac Comp Sci & Informat Amman 11953 Jordan Al Balqa Appl Univ BAU Dept Management Informat Syst Amman Univ Coll Amman Jordan YU Dept Comp Sci Fac Informat Technol & Comp Sci Irbid Jordan
text clustering problem (TCP) is a leading process in many key areas such as information retrieval, text mining, and natural language processing. This presents the need for a potent document clustering algorithm that ... 详细信息
来源: 评论
Swarm Intelligence Algorithms in text document clustering with Various Benchmarks
收藏 引用
SENSORS 2021年 第9期21卷 3196-3196页
作者: Selvaraj, Suganya Choi, Eunmi Kookmin Univ Dept Financial Informat Secur Seoul 02707 South Korea Kookmin Univ Dept Software Coll Comp Sci Seoul 02707 South Korea
text document clustering refers to the unsupervised classification of textual documents into clusters based on content similarity and can be applied in applications such as search optimization and extracting hidden in... 详细信息
来源: 评论
A combination of objective functions and hybrid Krill herd algorithm for text document clustering analysis
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2018年 73卷 111-125页
作者: Abualigah, Laith Mohammad Khader, Ahamad Tajudin Hanandeh, Essam Said Univ Sains Malaysia Sch Comp Sci George Town 11800 Malaysia Zarqa Univ Dept Comp Informat Syst POB 13132 Zarqa Jordan
Krill herd (KH) algorithm is a novel swarm-based optimization algorithm that imitates krill herding behavior during the searching for foods. It has been successfully used in solving many complex optimization problems.... 详细信息
来源: 评论