咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 计算机科学与技术...
    • 2 篇 电气工程

主题

  • 3 篇 text-image corre...
  • 2 篇 unsupervised dom...
  • 1 篇 semantic segment...
  • 1 篇 personalized rec...
  • 1 篇 self-training
  • 1 篇 diffusion model ...
  • 1 篇 weakly-supervise...

机构

  • 1 篇 tsinghua univ th...
  • 1 篇 korea univ dept ...
  • 1 篇 korea univ dept ...
  • 1 篇 tsinghua univ de...
  • 1 篇 aibee inc algori...
  • 1 篇 korea univ dept ...
  • 1 篇 beijing natl res...

作者

  • 2 篇 lee seong-whan
  • 2 篇 lee yu-won
  • 1 篇 yang qi
  • 1 篇 xiao changming
  • 1 篇 kim ho-joong
  • 1 篇 kim young-eun
  • 1 篇 zhang changshui
  • 1 篇 zhou feng
  • 1 篇 oh myeong-seok

语言

  • 3 篇 英文
检索条件"主题词=Text-image correlation"
3 条 记 录,以下是1-10 订阅
排序:
Enhancing Discriminative Ability among Similar Classes with Guidance of text-image correlation for Unsupervised Domain Adaptation
Enhancing Discriminative Ability among Similar Classes with ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Lee, Yu-Won Oh, Myeong-Seok Kim, Ho-Joong Lee, Seong-Whan Korea Univ Dept Artificial Intelligence Seoul South Korea Korea Univ Dept Comp & Radio Commun Engn Seoul South Korea
In deep learning, unsupervised domain adaptation (UDA) is commonly utilized when the availability of abundant labeled data is often limited. Several methods have been proposed for UDA to overcome the difficulty of dis... 详细信息
来源: 评论
LC-MSM: Language-Conditioned Masked Segmentation Model for unsupervised domain adaptation
收藏 引用
PATTERN RECOGNITION 2024年 148卷
作者: Kim, Young-Eun Lee, Yu-Won Lee, Seong-Whan Korea Univ Dept Artificial Intelligence Seoul 02841 South Korea
Unsupervised domain adaptation (UDA) is an important research topic in semantic segmentation tasks, wherein pixel-wise annotations are often difficult to collect in a test environment due to their high labeling costs.... 详细信息
来源: 评论
From text to mask: Localizing entities using the attention of text-to-image diffusion models
收藏 引用
NEUROCOMPUTING 2024年 610卷
作者: Xiao, Changming Yang, Qi Zhou, Feng Zhang, Changshui Tsinghua Univ THUAI Inst Artificial Intelligence Beijing 100084 Peoples R China Beijing Natl Res Ctr Informat Sci & Technol BNRist Beijing 100084 Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China Aibee Inc Algorithm Res Beijing Peoples R China
Diffusion models have revolted the field of text-to-image generation recently. The unique way of fusing text and image information contributes to their remarkable capability of generating highly text-related images. F... 详细信息
来源: 评论