咨询与建议

限定检索结果

文献类型

  • 83 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 137 篇 工学
    • 123 篇 计算机科学与技术...
    • 34 篇 电气工程
    • 21 篇 软件工程
    • 12 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 农业工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 城乡规划学
  • 13 篇 医学
    • 12 篇 临床医学
  • 12 篇 理学
    • 7 篇 物理学
    • 3 篇 化学
    • 2 篇 数学
    • 2 篇 科学技术史(分学科...
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 哲学
    • 1 篇 哲学
  • 2 篇 历史学
    • 2 篇 考古学
  • 2 篇 艺术学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 145 篇 text-to-image ge...
  • 23 篇 diffusion model
  • 17 篇 diffusion models
  • 11 篇 generative adver...
  • 9 篇 generative ai
  • 8 篇 prompt engineeri...
  • 8 篇 generative adver...
  • 7 篇 large language m...
  • 7 篇 image synthesis
  • 6 篇 deep learning
  • 6 篇 task analysis
  • 6 篇 generative model...
  • 5 篇 generative model
  • 5 篇 stable diffusion
  • 5 篇 real image editi...
  • 5 篇 feature extracti...
  • 5 篇 aigc
  • 5 篇 training
  • 4 篇 natural language...
  • 4 篇 image generation

机构

  • 5 篇 univ sci & techn...
  • 4 篇 zhejiang univ pe...
  • 4 篇 alibaba grp peop...
  • 4 篇 shandong normal ...
  • 2 篇 univ michigan an...
  • 2 篇 univ chinese aca...
  • 2 篇 sidi mohamed ben...
  • 2 篇 hong kong univ s...
  • 2 篇 osaka univ osaka
  • 2 篇 chinese acad sci...
  • 2 篇 harbin inst tech...
  • 2 篇 university of ch...
  • 2 篇 sidi mohamed ben...
  • 2 篇 univ jyvaskyla f...
  • 2 篇 zhejiang univ co...
  • 2 篇 tianjin univ peo...
  • 2 篇 sun yat sen univ...
  • 2 篇 southern univ sc...
  • 2 篇 chinese academy ...
  • 2 篇 univ calif san d...

作者

  • 5 篇 huang jiancheng
  • 4 篇 bahani mourad
  • 4 篇 wu yankun
  • 4 篇 liu li
  • 4 篇 garcia noa
  • 4 篇 el ouaazizi aziz...
  • 4 篇 oppenlaender jon...
  • 4 篇 maalmi khalil
  • 4 篇 zhang huaxiang
  • 4 篇 nakashima yuta
  • 3 篇 liu yifan
  • 3 篇 liu dongmei
  • 3 篇 mao zhendong
  • 3 篇 chen shifeng
  • 2 篇 gong biao
  • 2 篇 yang yi
  • 2 篇 silvennoinen joh...
  • 2 篇 visuri aku
  • 2 篇 chen songyan
  • 2 篇 ma yue

语言

  • 143 篇 英文
  • 2 篇 其他
  • 1 篇 法文
检索条件"主题词=Text-to-Image Generation"
145 条 记 录,以下是21-30 订阅
排序:
LayoutLLM-T2I: Eliciting Layout Guidance from LLM for text-to-image generation  23
LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-t...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Qu, Leigang Wu, Shengqiong Fei, Hao Nie, Liqiang Chua, Tat-Seng Natl Univ Singapore NExT Res Ctr Singapore Singapore Harbin Inst Technol Shenzhen Shenzhen Peoples R China
In the text-to-image generation field, recent remarkable progress in Stable Diffusion makes it possible to generate rich kinds of novel photorealistic images. However, current models still face misalignment issues (e.... 详细信息
来源: 评论
MAGAN: Multi-attention Generative Adversarial Networks for text-to-image generation  4th
MAGAN: Multi-attention Generative Adversarial Networks for T...
收藏 引用
4th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Jia, Xibin Mi, Qing Dai, Qi Beijing Univ Technol Beijing 100124 Peoples R China
Although generative adversarial networks are commonly used in textto-image generation tasks and have made great progress, there are still some problems. The convolution operation used in these GANs-based methods works... 详细信息
来源: 评论
Background Layout generation and Object Knowledge Transfer for text-to-image generation  22
Background Layout Generation and Object Knowledge Transfer f...
收藏 引用
30th ACM International Conference on Multimedia (MM)
作者: Chen, Zhuowei Mao, Zhendong Fang, Shancheng Hu, Bo Univ Sci & Technol China Hefei Peoples R China
text-to-image generation (T2I) aims to generate realistic and semantically consistent images according to the natural language descriptions. Built upon the recent advances in generative adversarial networks (GANs), ex... 详细信息
来源: 评论
Learning Prompt-Level Quality Variance for Cost-Effective text-to-image generation  24
Learning Prompt-Level Quality Variance for Cost-Effective Te...
收藏 引用
33rd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Lee, Dongkeun Lee, Wonjun Korea Univ Seoul South Korea
text-to-image generation is a multivariable process in which the resulting quality is determined by both the generative model and the input prompt. While previous efforts rely on a single model either by enhancing its... 详细信息
来源: 评论
Learning Disentangled Identifiers for Action-Customized text-to-image generation
Learning Disentangled Identifiers for Action-Customized Text...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Huang, Siteng Gong, Biao Feng, Yutong Chen, Xi Fu, Yuqian Liu, Yu Wang, Donglin Zhejiang Univ Hangzhou Peoples R China Alibaba Grp Hangzhou Peoples R China Swiss Fed Inst Technol Zurich Switzerland Westlake Univ Sch Engn AI Div Machine Intelligence Lab MiLAB Hangzhou Peoples R China
This study focuses on a novel task in text-to-image (T2I) generation, namely action customization. The objective of this task is to learn the co-existing action from limited data and generalize it to unseen humans or ... 详细信息
来源: 评论
Check, Locate, Rectify: A Training-Free Layout Calibration System for text-to-image generation
Check, Locate, Rectify: A Training-Free Layout Calibration S...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Gong, Biao Huang, Siteng Feng, Yutong Zhang, Shiwei Li, Yuyuan Liu, Yu Alibaba Grp Hangzhou Peoples R China Zhejiang Univ Hangzhou Peoples R China
Diffusion models have recently achieved remarkable progress in generating realistic images. However, challenges remain in accurately understanding and synthesizing the layout requirements in the textual prompts. To al... 详细信息
来源: 评论
Rich Human Feedback for text-to-image generation
Rich Human Feedback for Text-to-Image Generation
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Liang, Youwei He, Junfeng Li, Gang Li, Peizhao Klimovskiy, Arseniy Carolan, Nicholas Sun, Jiao Pont-Tuset, Jordi Young, Sarah Yang, Feng Ke, Junjie Dvijotham, Krishnamurthy Di Collins, Katherine M. Luo, Yiwen Li, Yang Kohlhoff, Kai J. Ramachandran, Deepak Navalpakkam, Vidhya Univ Calif San Diego San Diego CA USA Google Res Mountain View CA 94043 USA Univ Southern Calif Los Angeles CA USA Univ Cambridge Cambridge England Brandeis Univ Waltham MA USA Google Mountain View CA USA Google Gemini Team Mountain View CA USA
Recent text-to-image (T2I) generation models such as Stable Diffusion and imagen have made significant progress in generating high-resolution images based on text descriptions. However, many generated images still suf... 详细信息
来源: 评论
A 28.6 mJ/iter Stable Diffusion Processor for text-to-image generation with Patch Similarity-based Sparsity Augmentation and text-based Mixed-Precision
A 28.6 mJ/iter Stable Diffusion Processor for Text-to-Image ...
收藏 引用
IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Choi, Jiwon Jo, Wooyoung Hong, Seongyon Kwon, Beomseok Park, Wonhoon Yoo, Hoi-Jun Korea Adv Inst Sci & Technol KAIST Sch Elect Engn Daejeon South Korea
This paper presents an energy-efficient stable diffusion processor for text-to-image generation. While stable diffusion attained attention for high-quality image synthesis results, its inherent characteristics hinder ... 详细信息
来源: 评论
PromptPaint: Steering text-to-image generation Through Paint Medium-like Interactions  23
PromptPaint: Steering Text-to-Image Generation Through Paint...
收藏 引用
36th Annual ACM Symposium on User Interface Software and Technology (UIST)
作者: Chung, John Joon Young Adar, Eytan SpaceCraft Inc Los Angeles CA 90046 USA Univ Michigan Ann Arbor MI 48109 USA
While difusion-based text-to-image (T2I) models provide a simple and powerful way to generate images, guiding this generation remains a challenge. For concepts that are difcult to describe through language, users may ... 详细信息
来源: 评论
Adma-GAN: Attribute-Driven Memory Augmented GANs for text-to-image generation.  22
Adma-GAN: Attribute-Driven Memory Augmented GANs for Text-to...
收藏 引用
30th ACM International Conference on Multimedia (MM)
作者: Wu, Xintian Zhao, Hanbin Zheng, Liangli Ding, Shouhong Li, Xi Zhejiang Univ Hangzhou Peoples R China Tencent Youtu Lab Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China
As a challenging task, text-to-image generation aims to generate photo-realistic and semantically consistent images according to the given text descriptions. Existing methods mainly extract the text information from o... 详细信息
来源: 评论