咨询与建议

限定检索结果

文献类型

  • 83 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 137 篇 工学
    • 123 篇 计算机科学与技术...
    • 34 篇 电气工程
    • 21 篇 软件工程
    • 12 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 农业工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 城乡规划学
  • 13 篇 医学
    • 12 篇 临床医学
  • 12 篇 理学
    • 7 篇 物理学
    • 3 篇 化学
    • 2 篇 数学
    • 2 篇 科学技术史(分学科...
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 哲学
    • 1 篇 哲学
  • 2 篇 历史学
    • 2 篇 考古学
  • 2 篇 艺术学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 145 篇 text-to-image ge...
  • 23 篇 diffusion model
  • 17 篇 diffusion models
  • 11 篇 generative adver...
  • 9 篇 generative ai
  • 8 篇 prompt engineeri...
  • 8 篇 generative adver...
  • 7 篇 large language m...
  • 7 篇 image synthesis
  • 6 篇 deep learning
  • 6 篇 task analysis
  • 6 篇 generative model...
  • 5 篇 generative model
  • 5 篇 stable diffusion
  • 5 篇 real image editi...
  • 5 篇 feature extracti...
  • 5 篇 aigc
  • 5 篇 training
  • 4 篇 natural language...
  • 4 篇 image generation

机构

  • 5 篇 univ sci & techn...
  • 4 篇 zhejiang univ pe...
  • 4 篇 alibaba grp peop...
  • 4 篇 shandong normal ...
  • 2 篇 univ michigan an...
  • 2 篇 univ chinese aca...
  • 2 篇 sidi mohamed ben...
  • 2 篇 hong kong univ s...
  • 2 篇 osaka univ osaka
  • 2 篇 chinese acad sci...
  • 2 篇 harbin inst tech...
  • 2 篇 university of ch...
  • 2 篇 sidi mohamed ben...
  • 2 篇 univ jyvaskyla f...
  • 2 篇 zhejiang univ co...
  • 2 篇 tianjin univ peo...
  • 2 篇 sun yat sen univ...
  • 2 篇 southern univ sc...
  • 2 篇 chinese academy ...
  • 2 篇 univ calif san d...

作者

  • 5 篇 huang jiancheng
  • 4 篇 bahani mourad
  • 4 篇 wu yankun
  • 4 篇 liu li
  • 4 篇 garcia noa
  • 4 篇 el ouaazizi aziz...
  • 4 篇 oppenlaender jon...
  • 4 篇 maalmi khalil
  • 4 篇 zhang huaxiang
  • 4 篇 nakashima yuta
  • 3 篇 liu yifan
  • 3 篇 liu dongmei
  • 3 篇 mao zhendong
  • 3 篇 chen shifeng
  • 2 篇 gong biao
  • 2 篇 yang yi
  • 2 篇 silvennoinen joh...
  • 2 篇 visuri aku
  • 2 篇 chen songyan
  • 2 篇 ma yue

语言

  • 143 篇 英文
  • 2 篇 其他
  • 1 篇 法文
检索条件"主题词=Text-to-Image Generation"
145 条 记 录,以下是51-60 订阅
排序:
image generation from Arabic text: Comparative Study of Proposed Architectures  8th
Image Generation from Arabic Text: Comparative Study of Prop...
收藏 引用
8th International Conference on Arabic Language Processing
作者: Bahani, Mourad El Ouaazizi, Aziza Maalmi, Khalil Essahlaoui, Abdelouahed Sidi Mohamed Ben Abdellah Univ Natl Sch Appl Sci Artificial Intelligence Data Sci & Emerging Syst Fes Morocco Sidi Mohamed Ben Abdellah Univ Lab Engn Sci FPT Taza Morocco
text-to-image generation is a cutting-edge technology that enables computers to generate images from textual descriptions. While this technology has been extensively researched and applied to English language text, ap... 详细信息
来源: 评论
Customization of the text-to-image diffusion model by fine-tuning for the generation of synthetic images of cyanobacterial blooms in lentic water bodies
收藏 引用
Expert Systems with Applications 2025年 287卷
作者: Fredy Barrientos-Espillco Gonzalo Pajares José A. López-Orozco Eva Besada-Portas Department of Computer Architecture and Automation University Complutense of Madrid 28040 Madrid Spain Institute for Knowledge Technology University Complutense of Madrid 28040 Madrid Spain
Cyanobacterial blooms emerge unpredictably on the surface of lentic water bodies, posing both ecological threats and public health risks. To effectively monitor these events, this study introduces the use of Machine V... 详细信息
来源: 评论
Txt2Img-MHN: Remote Sensing image generation From text Using Modern Hopfield Networks
收藏 引用
IEEE TRANSACTIONS ON image PROCESSING 2023年 32卷 5737-5750页
作者: Xu, Yonghao Yu, Weikang Ghamisi, Pedram Kopp, Michael Hochreiter, Sepp Inst Adv Res Artificial Intelligence IARAI A-1030 Vienna Austria Linkoping Univ Dept Elect Engn Comp Vis Lab S-58183 Linkoping Sweden Helmholtz Inst Freiberg Resource Technol Helmholtz Zentrum Dresden Rossendorf Machine Learning Grp D-09599 Freiberg Germany Johannes Kepler Univ Linz Inst Machine Learning ELLIS Unit Linz LIT AI Lab A-4040 Linz Austria
The synthesis of high-resolution remote sensing images based on text descriptions has great potential in many practical application scenarios. Although deep neural networks have achieved great success in many importan... 详细信息
来源: 评论
Interpolating the text-to-image Correspondence Based on Phonetic and Phonological Similarities for Nonword-to-image generation
收藏 引用
IEEE ACCESS 2024年 12卷 41299-41316页
作者: Matsuhira, Chihaya Kastner, Marc A. Komamizu, Takahiro Hirayama, Takatsugu Doman, Keisuke Kawanishi, Yasutomo Ide, Ichiro Nagoya Univ Grad Sch Informat Nagoya Aichi 4648601 Japan Kyoto Univ Grad Sch Informat Kyoto 6068501 Japan Nagoya Univ Math & Data Sci Ctr Nagoya Aichi 4648601 Japan Univ Human Environm Fac Environm Sci Okazaki Aichi 4443505 Japan Chukyo Univ Sch Engn Toyota Aichi 4700393 Japan RIKEN Guardian Robot Project Seika Kyoto 6190288 Japan
text-to-image (T2I) generation is the task of synthesizing images corresponding to a given text input. The recent innovations in artificial intelligence have enhanced the capacity of conventional T2I generation, yield... 详细信息
来源: 评论
Cross-modal text and visual generation: A systematic review. Part 1: image to text
收藏 引用
INFORMATION FUSION 2023年 第1期93卷 302-329页
作者: Zelaszczyk, Maciej Mandziuk, Jacek Warsaw Univ Technol Plac Politech 1 PL-00661 Warsaw Poland
We review the existing literature on generating text from visual data under the cross-modal generation umbrella, which affords us to compare and contrast various approaches taking visual data as input and producing te... 详细信息
来源: 评论
ControlStyle: text-Driven Stylized image generation Using Diffusion Priors  23
ControlStyle: Text-Driven Stylized Image Generation Using Di...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Chen, Jingwen Pan, Yingwei Yao, Ting Mei, Tao Sun Yat Sen Univ Guangzhou Peoples R China Univ Sci & Technol China Hefei Peoples R China HiDream Ai Inc Beijing Peoples R China
Recently, the multimedia community has witnessed the rise of diffusion models trained on large-scale multi-modal data for visual content creation, particularly in the field of text-to-image generation. In this paper, ... 详细信息
来源: 评论
Leveraging the Syntactic Structure of the text Prompt to Enhance Object-Attribute Binding in image generation  2
Leveraging the Syntactic Structure of the Text Prompt to Enh...
收藏 引用
2nd Workshop on Large Generative Models Meet Multimodal Applications (LGM3A)
作者: Trusca, Maria Mihaela Nuyts, Wolf Thomm, Jonathan Honig, Robert Hofmann, Thomas Tuytelaars, Tinne Moens, Marie-Francine Katholieke Univ Leuven Dept Comp Sci Leuven Belgium Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Katholieke Univ Leuven Dept Elect Engn Leuven Belgium
Current diffusion models can generate photorealistic images from text prompts but often struggle to correctly associate the attributes mentioned in the text with the appropriate objects in the image. To address this i... 详细信息
来源: 评论
Chest-Diffusion: A Light-Weight text-to-image Model for Report-to-CXR generation  21
Chest-Diffusion: A Light-Weight Text-to-Image Model for Repo...
收藏 引用
21st IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Huang, Peng Gao, Xue Huang, Lihong Jiao, Jing Li, Xiaokang Wang, Yuanyuan Guo, Yi Fudan Univ Dept Elect Engn Shanghai 200433 Peoples R China Key Lab Med Imaging Comp & Comp Assisted Interven Shanghai 200032 Peoples R China
text-to-image generation has important implications for generation of diverse and controllable images. Several attempts have been made to adapt Stable Diffusion (SD) to the medical domain. However, the large distribut... 详细信息
来源: 评论
text-based Sequential image generation  14
Text-based Sequential Image Generation
收藏 引用
14th International Conference on Machine Vision (ICMV)
作者: Efimova, Valeria Filchenkov, Andrey ITMO Univ St Petersburg Russia Statanly Technol St Petersburg Russia
Despite recent impressive results of generative adversarial networks on text-to-image generation, the generation of complex scenes with multiple objects in the complicated background remains challenging;moreover, end-... 详细信息
来源: 评论
"Journey of Finding the Best Query": Understanding the User Experience of AI image generation System
收藏 引用
INTERNATIONAL JOURNAL OF HUMAN-COMPUTER INTERACTION 2025年 第2期41卷 951-969页
作者: Kim, Soomin Eun, Jinsu Oh, Changhoon Lee, Joonhwan Seoul Natl Univ Seoul South Korea Yonsei Univ Seoul South Korea
With the advancement of AI, even people without professional experience can create artworks using AI-based image generation systems like DALL-E 2. However, little is known about how users interact with these new AI al... 详细信息
来源: 评论