咨询与建议

限定检索结果

文献类型

  • 83 篇 会议
  • 62 篇 期刊文献

馆藏范围

  • 145 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 137 篇 工学
    • 123 篇 计算机科学与技术...
    • 34 篇 电气工程
    • 21 篇 软件工程
    • 12 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 4 篇 电子科学与技术(可...
    • 3 篇 机械工程
    • 3 篇 建筑学
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 农业工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 城乡规划学
  • 13 篇 医学
    • 12 篇 临床医学
  • 12 篇 理学
    • 7 篇 物理学
    • 3 篇 化学
    • 2 篇 数学
    • 2 篇 科学技术史(分学科...
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 3 篇 法学
    • 3 篇 社会学
  • 2 篇 哲学
    • 1 篇 哲学
  • 2 篇 历史学
    • 2 篇 考古学
  • 2 篇 艺术学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 145 篇 text-to-image ge...
  • 23 篇 diffusion model
  • 17 篇 diffusion models
  • 11 篇 generative adver...
  • 9 篇 generative ai
  • 8 篇 prompt engineeri...
  • 8 篇 generative adver...
  • 7 篇 large language m...
  • 7 篇 image synthesis
  • 6 篇 deep learning
  • 6 篇 task analysis
  • 6 篇 generative model...
  • 5 篇 generative model
  • 5 篇 stable diffusion
  • 5 篇 real image editi...
  • 5 篇 feature extracti...
  • 5 篇 aigc
  • 5 篇 training
  • 4 篇 natural language...
  • 4 篇 image generation

机构

  • 5 篇 univ sci & techn...
  • 4 篇 zhejiang univ pe...
  • 4 篇 alibaba grp peop...
  • 4 篇 shandong normal ...
  • 2 篇 univ michigan an...
  • 2 篇 univ chinese aca...
  • 2 篇 sidi mohamed ben...
  • 2 篇 hong kong univ s...
  • 2 篇 osaka univ osaka
  • 2 篇 chinese acad sci...
  • 2 篇 harbin inst tech...
  • 2 篇 university of ch...
  • 2 篇 sidi mohamed ben...
  • 2 篇 univ jyvaskyla f...
  • 2 篇 zhejiang univ co...
  • 2 篇 tianjin univ peo...
  • 2 篇 sun yat sen univ...
  • 2 篇 southern univ sc...
  • 2 篇 chinese academy ...
  • 2 篇 univ calif san d...

作者

  • 5 篇 huang jiancheng
  • 4 篇 bahani mourad
  • 4 篇 wu yankun
  • 4 篇 liu li
  • 4 篇 garcia noa
  • 4 篇 el ouaazizi aziz...
  • 4 篇 oppenlaender jon...
  • 4 篇 maalmi khalil
  • 4 篇 zhang huaxiang
  • 4 篇 nakashima yuta
  • 3 篇 liu yifan
  • 3 篇 liu dongmei
  • 3 篇 mao zhendong
  • 3 篇 chen shifeng
  • 2 篇 gong biao
  • 2 篇 yang yi
  • 2 篇 silvennoinen joh...
  • 2 篇 visuri aku
  • 2 篇 chen songyan
  • 2 篇 ma yue

语言

  • 143 篇 英文
  • 2 篇 其他
  • 1 篇 法文
检索条件"主题词=Text-to-Image Generation"
145 条 记 录,以下是71-80 订阅
排序:
Enhancing image generation Fidelity via Progressive Prompts
Enhancing Image Generation Fidelity via Progressive Prompts
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Xiong, Zhen Li, Yuqi Yang, Chuanguang Tan, Tiao Zhu, Zhihong Li, Siyuan Ma, Yue Institute of Computing Technology Chinese Academy of Sciences China Tsinghua University China Peking University China EaseUS China The Hong Kong University of Science and Technology Hong Kong
Diffusion transformer (DiT) architecture catches much attention in image generation, which achieves better fidelity, performance, and diversity. However, most existing DiT-based image generation methods are global-awa... 详细信息
来源: 评论
AI-driven design exploration: Utilizing brand logos as an inspiration source for architectural design
收藏 引用
AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING 2025年 39卷 e5-e5页
作者: Celik, Tugce Ergin, Elif Akagun Ostim Tech Univ Ankara Turkiye
This study is predicated on the limited scholarly exploration of the connection between logos and the architectural spaces associated with these brands. The primary objective of this paper is to investigate the relati... 详细信息
来源: 评论
Revealing Gender Bias from Prompt to image in Stable Diffusion
收藏 引用
JOURNAL OF IMAGING 2025年 第2期11卷 35-35页
作者: Wu, Yankun Nakashima, Yuta Garcia, Noa Osaka Univ Ctr D3 Suita Osaka 5650871 Japan
Social biases in generative models have gained increasing attention. This paper proposes an automatic evaluation protocol for text-to-image generation, examining how gender bias originates and perpetuates in the gener... 详细信息
来源: 评论
text-Guided Synthesis in Medical Multimedia Retrieval: A Framework for Enhanced Colonoscopy image Classification and Segmentation
收藏 引用
ALGORITHMS 2025年 第3期18卷 155-155页
作者: Peter, Ojonugwa Oluwaf Ejiga emi Adeniran, Opeyemi Taiwo John-Otumu, Adetokunbo MacGregor Khalifa, Fahmi Rahman, Md Mahmudur Morgan State Univ Sch Comp Math & Nat Sci Dept Comp Sci Baltimore MD 21251 USA Morgan State Univ Dept Elect & Comp Engn Baltimore MD 21251 USA Fed Univ Technol Owerri Dept Informat Technol Owerri 460116 Imo Nigeria
The lack of extensive, varied, and thoroughly annotated datasets impedes the advancement of artificial intelligence (AI) for medical applications, especially colorectal cancer detection. Models trained with limited di... 详细信息
来源: 评论
A new frontier in design studio: AI and human collaboration in conceptual design
收藏 引用
Frontiers of Architectural Research 2025年
作者: Karadağ, Derya Ozar, Betül Faculty of Arts Design and Architecture Işık University Istanbul Turkey
This study explores the role of artificial intelligence (AI) in the conceptual design phase of interior design education, focusing on AI's potential to help students visualise and refine creative ideas. Conducted ... 详细信息
来源: 评论
Multimodal Intelligence: Representation Learning, Information Fusion, and Applications
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2020年 第3期14卷 478-493页
作者: Zhang, Chao Yang, Zichao He, Xiaodong Deng, Li Univ Cambridge Dept Engn Cambridge CB2 1PZ England JD Com Inc JD AI Res Beijing 100101 Peoples R China Citadel LLC Chicago IL 60603 USA Citadel Amer Seattle WA 98121 USA
Deep learning methods haverevolutionized speech recognition, image recognition, and natural language processing since 2010. Each of these tasks involves a single modality in their input signals. However, many applicat... 详细信息
来源: 评论
Attentional Generative Adversarial Networks With Representativeness and Diversity for Generating text to Realistic image
收藏 引用
IEEE ACCESS 2020年 8卷 9587-9596页
作者: Tian, Anjie Lu, Lu South China Univ Technol Sch Comp Sci & Engn Guangzhou 510000 Peoples R China
In recent years, with the emergence and rapid development of Generative Adversarial Networks (GANs), the generation of realistic images consistent with their semantics based on text description has become one of the m... 详细信息
来源: 评论
image manipulation with natural language using Two-sided Attentive Conditional Generative Adversarial Network
收藏 引用
NEURAL NETWORKS 2021年 136卷 207-217页
作者: Zhu, Dawei Mogadala, Aditya Klakow, Dietrich Saarland Univ Spoken Language Syst LSV Saarland Informat Campus Saarbrucken Germany
Altering the content of an image with photo editing tools is a tedious task for an inexperienced user, especially, when modifying the visual attributes of a specific object in an image without affecting other constitu... 详细信息
来源: 评论
Enhancing fine-detail image synthesis from text descriptions by text aggregation and connection fusion module
收藏 引用
SIGNAL PROCESSING-image COMMUNICATION 2024年 122卷
作者: Zhou, Huaping Wu, Tao Ye, Senmao Qin, Xinru Sun, Kelei Anhui Univ Sci & Technol Sch Comp Sci & Engn Huainan 232001 Peoples R China South China Univ Technol Guangzhou 510641 Peoples R China
Synthesizing images with fine details from text descriptions is a challenge. The existing single-stage generative adversarial networks (GANs) fuse sentence features into the image generation process through affine tra... 详细信息
来源: 评论
KT-GAN: Knowledge-Transfer Generative Adversarial Network for text-to-image Synthesis
收藏 引用
IEEE TRANSACTIONS ON image PROCESSING 2021年 30卷 1275-1290页
作者: Tan, Hongchen Liu, Xiuping Liu, Meng Yin, Baocai Li, Xin Dalian Univ Technol Sch Math Sci Dalian 116024 Peoples R China Shandong Jianzhu Univ Sch Comp Sci & Technol Jinan 250101 Peoples R China Dalian Univ Technol Dept Elect Informat & Elect Engn Dalian 116024 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China Louisiana State Univ Sch Elect Engn & Comp Sci Baton Rouge LA 70803 USA Louisiana State Univ Ctr Computat & Technol Baton Rouge LA 70803 USA
This paper presents a new framework, Knowledge-Transfer Generative Adversarial Network (KT-GAN), for fine-grained text-to-image generation. We introduce two novel mechanisms: an Alternate Attention-Transfer Mechanism ... 详细信息
来源: 评论