咨询与建议

限定检索结果

文献类型

  • 65 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 117 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 110 篇 工学
    • 92 篇 计算机科学与技术...
    • 56 篇 电气工程
    • 25 篇 软件工程
    • 22 篇 信息与通信工程
    • 6 篇 电子科学与技术(可...
    • 6 篇 控制科学与工程
    • 4 篇 测绘科学与技术
    • 2 篇 机械工程
    • 1 篇 水利工程
    • 1 篇 网络空间安全
  • 13 篇 医学
    • 12 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 9 篇 理学
    • 3 篇 地球物理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 地理学
    • 1 篇 生物学
  • 6 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 体育学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 117 篇 text-to-image sy...
  • 37 篇 generative adver...
  • 16 篇 generative adver...
  • 13 篇 semantics
  • 12 篇 deep learning
  • 12 篇 task analysis
  • 12 篇 visualization
  • 12 篇 image synthesis
  • 12 篇 generators
  • 8 篇 generative adver...
  • 7 篇 gallium nitride
  • 7 篇 generative model...
  • 7 篇 attention mechan...
  • 6 篇 diffusion model
  • 6 篇 training
  • 6 篇 gan
  • 5 篇 image generation
  • 5 篇 computer vision
  • 5 篇 generative adver...
  • 4 篇 multimodal learn...

机构

  • 3 篇 beijing jiaotong...
  • 3 篇 univ trento dept...
  • 2 篇 east china univ ...
  • 2 篇 dalian univ tech...
  • 2 篇 multimedia univ ...
  • 2 篇 kings coll londo...
  • 2 篇 mawlana bhashani...
  • 2 篇 univ sci & techn...
  • 2 篇 hosei univ grad ...
  • 2 篇 peking univ inst...
  • 2 篇 chinese univ hon...
  • 2 篇 microsoft res as...
  • 2 篇 amer int univ ba...
  • 2 篇 beijing inst tec...
  • 2 篇 hefei univ techn...
  • 2 篇 dalian univ tech...
  • 2 篇 southwest univ s...
  • 2 篇 auckland univ te...
  • 2 篇 hosei univ
  • 2 篇 nanjing univ pos...

作者

  • 4 篇 zhou jinjia
  • 4 篇 zhang zhiqiang
  • 4 篇 wang tao
  • 4 篇 wang min
  • 4 篇 melgani farid
  • 4 篇 bejiga mesay bel...
  • 4 篇 yu wenxin
  • 4 篇 lang congyan
  • 4 篇 peng yuxin
  • 4 篇 feng songhe
  • 3 篇 li xin
  • 3 篇 jiang ning
  • 3 篇 yin baocai
  • 3 篇 tan hongchen
  • 3 篇 cheng jun
  • 3 篇 wu fuxiang
  • 3 篇 yuan mingkuan
  • 3 篇 liang liqian
  • 3 篇 zhang han
  • 3 篇 liu xiuping

语言

  • 117 篇 英文
检索条件"主题词=Text-to-Image Synthesis"
117 条 记 录,以下是51-60 订阅
排序:
Joint Embedding based text-to-image synthesis  32
Joint Embedding based Text-to-Image Synthesis
收藏 引用
32nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
作者: Wang, Menglan Yu, Yue Li, Benyuan Beijing Inst Technol Sch Comp Sci & Technol Beijing Peoples R China
Learning joint embedding between image and text is significant for text-to-image synthesis as it bridges the semantic gap between image and text. Most existing text-to-image generation methods depend on the quality of... 详细信息
来源: 评论
Unsupervised text-to-image synthesis
收藏 引用
PATTERN RECOGNITION 2021年 110卷 107573-107573页
作者: Dong, Yanlong Zhang, Ying Ma, Lin Wang, Zhi Luo, Jiebo Tsinghua Univ Beijing Peoples R China Tencent AI Lab Shenzhen Guangdong Peoples R China Meituan Dianping Grp Beijing Peoples R China Tsinghua Shenzhen Int Grad Sch Beijing Peoples R China Peng Cheng Lab Shenzhen Guangdong Peoples R China Univ Rochester Rochester NY 14627 USA
Recently, text-to-image synthesis has achieved great progresses with the advancement of the Genera-tive Adversarial Network (GAN). However, training the GAN models requires a large amount of pairwise image-text data, ... 详细信息
来源: 评论
Class-Balanced text to image synthesis With Attentive Generative Adversarial Network
收藏 引用
IEEE MULTIMEDIA 2021年 第3期28卷 21-31页
作者: Wang, Min Lang, Congyan Liang, Liqian Lyu, Gengyu Feng, Songhe Wang, Tao Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing 100044 Peoples R China
Although the text-to-image synthesis task has shown significant progress, it still remains a challenge in generating high-quality images. In this article, we first propose an attention-driven, cycle-refinement generat... 详细信息
来源: 评论
Visual Thinking of Neural Networks: Interactive text to image synthesis
收藏 引用
IEEE ACCESS 2021年 9卷 64510-64523页
作者: Lee, Hyunhee Kim, Gyeongmin Hur, Yuna Lim, Heuiseok Korea Univ Dept Comp Sci & Engn Seoul 02841 South Korea
Reasoning, a trait of cognitive intelligence, is regarded as a crucial ability that distinguishes humans from other species. However, neural networks now pose a challenge to this human ability. text-to-image synthesis... 详细信息
来源: 评论
End-to-End text-to-image synthesis with Spatial Constrains
收藏 引用
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 2020年 第4期11卷 47-47页
作者: Wang, Min Lang, Congyan Liang, Liqian Feng, Songhe Wang, Tao Gao, Yutong Beijing Jiaotong Univ Beijing Peoples R China
Although the performance of automatically generating high-resolution realistic images from text descriptions has been significantly boosted, many challenging issues in image synthesis have not been fully investigated,... 详细信息
来源: 评论
Cross-modal Feature Alignment based Hybrid Attentional Generative Adversarial Networks for text-to-image synthesis
收藏 引用
DIGITAL SIGNAL PROCESSING 2020年 107卷 102866-102866页
作者: Cheng, Qingrong Gu, Xiaodong Fudan Univ Dept Elect Engn Shanghai 200433 Peoples R China
With the development of the generative model, image synthesis has become a research hotspot. This paper presents a novel Cross-modal Feature Alignment based Hybrid Attentional Generative Adversarial Networks (CFA-HAGA... 详细信息
来源: 评论
DRAWGAN: text TO image synthesis WITH DRAWING GENERATIVE ADVERSARIAL NETWORKS
DRAWGAN: TEXT TO IMAGE SYNTHESIS WITH DRAWING GENERATIVE ADV...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhang, Zhiqiang Zhou, Jinjia Yu, Wenxin Jiang, Ning Hosei Univ Grad Sch Sci & Engn Tokyo Japan Southwest Univ Sci & Technol Sch Comp Sci & Technol Mianyang Sichuan Peoples R China
In this paper, we propose a novel drawing generative adversarial networks (DrawGAN) for text-to-image synthesis. The whole model divides the image synthesis into three stages by imitating the process of drawing. The f... 详细信息
来源: 评论
FA-GAN: FEATURE-AWARE GAN FOR text TO image synthesis
FA-GAN: FEATURE-AWARE GAN FOR TEXT TO IMAGE SYNTHESIS
收藏 引用
IEEE International Conference on image Processing (ICIP)
作者: Jeon, Eunyeong Kim, Kunhee Kim, Daijin Pohang Univ Sci & Technol Dept Comp Sci & Engn Pohang South Korea
text-to-image synthesis aims to generate a photo-realistic image from a given natural language description. Previous works have made significant progress with Generative Adversarial Networks (GANs). Nonetheless, it is... 详细信息
来源: 评论
text TO image synthesis WITH ERUDITE GENERATIVE ADVERSARIAL NETWORKS
TEXT TO IMAGE SYNTHESIS WITH ERUDITE GENERATIVE ADVERSARIAL ...
收藏 引用
IEEE International Conference on image Processing (ICIP)
作者: Zhang, Zhiqiang Yu, Wenxin Jiang, Ning Zhou, Jinjia Hosei Univ Tokyo Japan Southwest Univ Sci & Technol Mianyang Sichuan Peoples R China
In this paper, an Erudite Generative Adversarial Networks (EruditeGAN) is proposed for the text-to-image synthesis task. By introducing additional image distribution related to the original image into the network stru... 详细信息
来源: 评论
Semantically consistent text to fashion image synthesis with an enhanced attentional generative adversarial network ?
收藏 引用
PATTERN RECOGNITION LETTERS 2020年 135卷 22-29页
作者: Ak, Kenan E. Lim, Joo Hwee Tham, Jo Yew Kassim, Ashraf A. Natl Univ Singapore Elect & Comp Engn 4 Engn Dr 3Block E4 Singapore 117583 Singapore ASTAR Inst Infocomm Res I2R 1 Fusionopolis Way Singapore 138632 Singapore ESP xMedia Pte Ltd 75 Ayer Rajah Crescent02-15 Singapore 139953 Singapore
Recent advancements in Generative Adversarial Networks (GANs) have led to significant improvements in various image generation tasks including image synthesis based on text descriptions. In this paper, we present an e... 详细信息
来源: 评论