咨询与建议

限定检索结果

文献类型

  • 4 篇 会议
  • 2 篇 期刊文献

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 4 篇 计算机科学与技术...
    • 3 篇 电气工程
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 交通运输工程
  • 1 篇 理学
    • 1 篇 物理学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 6 篇 thermal object d...
  • 2 篇 object detection
  • 2 篇 computer vision
  • 1 篇 segment anything
  • 1 篇 illumination var...
  • 1 篇 deep learning
  • 1 篇 feature co-occur...
  • 1 篇 unsupervised dom...
  • 1 篇 transfer learnin...
  • 1 篇 image segmentati...
  • 1 篇 manuals
  • 1 篇 self-supervised ...
  • 1 篇 domain adaptatio...
  • 1 篇 contrastive lear...
  • 1 篇 long-wave infrar...
  • 1 篇 computational mo...
  • 1 篇 thermal sensors
  • 1 篇 unmanned aerial ...
  • 1 篇 multispectral im...
  • 1 篇 binary neural ne...

机构

  • 1 篇 chongqing univ c...
  • 1 篇 kt tech innovat ...
  • 1 篇 george mason uni...
  • 1 篇 ajou university ...
  • 1 篇 cuny dept comp s...
  • 1 篇 networks and ai ...
  • 1 篇 univ shanghai sc...
  • 1 篇 univ surrey surr...
  • 1 篇 ajou university ...
  • 1 篇 hyundai motor co...
  • 1 篇 gwangju inst sci...
  • 1 篇 univ elect sci &...
  • 1 篇 cuny grad ctr de...
  • 1 篇 ajou univ suwon

作者

  • 1 篇 na jaemin
  • 1 篇 yuan chunyu
  • 1 篇 munir farzeen
  • 1 篇 ye mao
  • 1 篇 gogia aryav
  • 1 篇 dinh phat do
  • 1 篇 zhu xiatian
  • 1 篇 azam shoaib
  • 1 篇 kim jiwon
  • 1 篇 kim taehoon
  • 1 篇 ji luping
  • 1 篇 hwang wonjun
  • 1 篇 lee soomok
  • 1 篇 lee keonho
  • 1 篇 oughton edward j...
  • 1 篇 cho kyunghwan
  • 1 篇 cho beomsik
  • 1 篇 tang song
  • 1 篇 li songtao
  • 1 篇 agaian sos s.

语言

  • 5 篇 英文
  • 1 篇 其他
检索条件"主题词=Thermal Object Detection"
6 条 记 录,以下是1-10 订阅
排序:
Domain Separation Aided Data Efficiency Enhancement for thermal object detection
Domain Separation Aided Data Efficiency Enhancement for Ther...
收藏 引用
2025 International Conference on Electronics, Information, and Communication, ICEIC 2025
作者: Cho, Beomsik Choi, Seoyeong Lee, Soomok Networks and AI Ajou University Department of Data Suwon Korea Republic of Ajou University Department of Mechanical Engineering Suwon Korea Republic of Ajou University Department of Mobility Engineering Suwon Korea Republic of
object detection is a critical component in autonomous driving systems, requiring robust performance across diverse lighting conditions, including nighttime scenarios where RGB cameras underperform due to low visibili... 详细信息
来源: 评论
SSTN: Self-Supervised Domain Adaptation thermal object detection for Autonomous Driving
SSTN: Self-Supervised Domain Adaptation Thermal Object Detec...
收藏 引用
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
作者: Munir, Farzeen Azam, Shoaib Jeon, Moongu Gwangju Inst Sci & Technol Sch Elect Engn & Comp Sci Gwangju South Korea
The perception of the environment plays a decisive role in the safe and secure operation of autonomous vehicles. The perception of the surrounding is way similar to human vision. The human's brain perceives the en... 详细信息
来源: 评论
BithermalNet: a lightweight network with BNN RPN for thermal object detection
BiThermalNet: a lightweight network with BNN RPN for thermal...
收藏 引用
Conference on Multimodal Image Exploitation and Learning
作者: Yuan, Chunyu Agaian, Sos S. CUNY Grad Ctr Dept Comp Sci New York NY 10016 USA CUNY Dept Comp Sci Coll Staten Isl New York NY 10021 USA
As traditional RGB cameras cannot perform well under weak light in the darkness and poor weather conditions, thermal cameras have become an essential component of edge systems. This paper proposes a lightweight, faste... 详细信息
来源: 评论
D3T: Distinctive Dual-Domain Teacher Zigzagging Across RGB-thermal Gap for Domain-Adaptive object detection
D3T: Distinctive Dual-Domain Teacher Zigzagging Across RGB-T...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Dinh Phat Do Kim, Taehoon Na, Jaemin Kim, Jiwon Lee, Keonho Cho, Kyunghwan Hwang, Wonjun Ajou Univ Suwon South Korea KT Tech Innovat Grp Seongnam South Korea Hyundai Motor Co Robot Lab Seoul South Korea
Domain adaptation for object detection typically entails transferring knowledge from one visible domain to another visible domain. However, there are limited studies on adapting from the visible to the thermal domain,... 详细信息
来源: 评论
A Multispectral Automated Transfer Technique (MATT) for Machine-Driven Image Labeling Utilizing the Segment Anything Model (SAM)
收藏 引用
IEEE ACCESS 2025年 13卷 4499-4516页
作者: Gallagher, James E. Gogia, Aryav Oughton, Edward J. George Mason Univ Dept Geog & Geoinformat Sci Fairfax VA 22030 USA
Segment Anything Model (SAM) is drastically accelerating the speed and accuracy of automatically segmenting and labeling large Red-Green-Blue (RGB) imagery datasets. However, SAM is unable to segment and label images ... 详细信息
来源: 评论
Illumination Distribution-Aware thermal Pedestrian detection
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第11期25卷 18688-18700页
作者: Li, Songtao Ye, Mao Ji, Luping Tang, Song Gan, Yan Zhu, Xiatian Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Univ Shanghai Sci & Technol Inst Machine Intelligence IMI Shanghai 200093 Peoples R China Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China Univ Surrey Surrey Inst People Centred Artificial Intelligence Ctr Vis Speech & Signal Proc Guildford GU2 7XH England
Pedestrian detection is an important task in computer vision, which is also an important part of intelligent transportation systems. For privacy protection, thermal images are widely used in pedestrian detection probl... 详细信息
来源: 评论