咨询与建议

限定检索结果

文献类型

  • 35 篇 期刊文献
  • 28 篇 会议

馆藏范围

  • 63 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 56 篇 工学
    • 42 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 13 篇 控制科学与工程
    • 10 篇 信息与通信工程
    • 6 篇 软件工程
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 8 篇 理学
    • 3 篇 物理学
    • 2 篇 化学
    • 2 篇 生物学
    • 2 篇 统计学(可授理学、...
    • 1 篇 数学
    • 1 篇 系统科学
  • 8 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 3 篇 经济学
    • 2 篇 应用经济学
    • 1 篇 理论经济学
  • 3 篇 医学
    • 3 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 1 篇 农学
    • 1 篇 作物学

主题

  • 63 篇 time series anom...
  • 7 篇 anomaly detectio...
  • 6 篇 transformer
  • 6 篇 time series anal...
  • 6 篇 unsupervised lea...
  • 4 篇 self-supervised ...
  • 3 篇 deep learning
  • 3 篇 aiops
  • 3 篇 autoencoder
  • 3 篇 contrastive lear...
  • 3 篇 machine learning
  • 3 篇 time series deco...
  • 2 篇 hidden markov mo...
  • 2 篇 dynamic threshol...
  • 2 篇 decision support
  • 2 篇 neural networks
  • 2 篇 situational awar...
  • 2 篇 geospatial infor...
  • 2 篇 convolution neur...
  • 2 篇 cyber-physical s...

机构

  • 2 篇 alibaba grp damo...
  • 2 篇 alibaba grp damo...
  • 2 篇 natl univ def te...
  • 1 篇 zhongyuan univ t...
  • 1 篇 jd intelligent c...
  • 1 篇 chongqing instit...
  • 1 篇 univ chinese aca...
  • 1 篇 hong kong univ s...
  • 1 篇 beijing inst tec...
  • 1 篇 korea univ sch i...
  • 1 篇 ibm corp munich
  • 1 篇 chungbuk natl un...
  • 1 篇 school of comput...
  • 1 篇 sugon ind contro...
  • 1 篇 institute of phy...
  • 1 篇 china elect powe...
  • 1 篇 wuhan univ sch c...
  • 1 篇 school of inform...
  • 1 篇 northwestern pol...
  • 1 篇 sichuan univ col...

作者

  • 2 篇 wen qingsong
  • 2 篇 zhang chaoli
  • 2 篇 zhou tian
  • 2 篇 cai zhiping
  • 2 篇 frehner robin
  • 2 篇 sun liang
  • 2 篇 stockinger kurt
  • 2 篇 zhou tongqing
  • 2 篇 wang chengyu
  • 2 篇 sun shiliang
  • 1 篇 rui wang
  • 1 篇 xu jiawei
  • 1 篇 ham gyeongdo
  • 1 篇 xiao chun
  • 1 篇 li ruoheng
  • 1 篇 liu dong
  • 1 篇 kim jina
  • 1 篇 cho yucheol
  • 1 篇 arn baudzus
  • 1 篇 kim jinoh

语言

  • 61 篇 英文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Time Series Anomaly Detection"
63 条 记 录,以下是1-10 订阅
排序:
A Multi-scale Patch Mixer Network for time series anomaly detection
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 140卷
作者: Wang, Qiushi Zhu, Yueming Sun, Zhicheng Li, Dong Ma, Yunbin Chinese Acad Sci Key Lab Networked Control Syst Shenyang 110016 Peoples R China Chinese Acad Sci Shenyang Inst Automat Shenyang 110016 Peoples R China PipeChina Inst Sci & Technol Langfang 065000 Peoples R China
With the development of Internet of Things (IoT) technology, a large amount of data with temporal characteristics is collected and stored. How to efficiently and accurately identify anomalies from these data is a majo... 详细信息
来源: 评论
Decomposition-based multi-scale transformer framework for time series anomaly detection
收藏 引用
NEURAL NETWORKS 2025年 187卷 107399页
作者: Zhang, Wenxin Luo, Cuicui Univ Chinese Acad Sci Sch Comp Sci & Technol Beijing 100000 Peoples R China Univ Chinese Acad Sci Int Coll Beijing 100000 Peoples R China
time series anomaly detection is crucial for maintaining stable systems. Existing methods face two main challenges. First, it is difficult to directly model the dependencies of diverse and complex patterns within the ... 详细信息
来源: 评论
Generality-aware self-supervised transformer for multivariate time series anomaly detection
收藏 引用
APPLIED INTELLIGENCE 2025年 第7期55卷 1-15页
作者: Cho, Yucheol Lee, Jae-Hyeok Ham, Gyeongdo Jang, Donggon Kim, Dae-shik Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon 34141 South Korea
Efficient identification of anomalies within multivariate time series data holds significant relevance in contemporary industrial settings. The challenge lies in swiftly and accurately pinpointing anomalous data point... 详细信息
来源: 评论
Uncertainty-informed dynamic threshold for time series anomaly detection
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 278卷
作者: Lee, Jungmin Lee, Jiyoon Kim, Seoung Bum Korea Univ Dept Ind & Management Engn 145 Anam Ro Seoul 02841 South Korea SK Innovat Optimizat & Analyt Off 99 Jong Ro Seoul 03188 South Korea
As time series data continues to be collected across various fields, the importance of automated anomaly detection systems is steadily increasing. A key challenge in anomaly detection lies in setting an optimal thresh... 详细信息
来源: 评论
Retentive network-based time series anomaly detection in cyber-physical systems
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 145卷
作者: Min, Zhaoyi Xiao, Qianqian Abbas, Muhammad Zhang, Duanjin Zhengzhou Univ Sch Elect & Informat Engn Zhengzhou 450001 Peoples R China Zhejiang Yuexiu Univ Eit Data Sci & Commun Coll Shaoxing 312000 Peoples R China Zhejiang Yuexiu Univ New Zealand Res Ctr Shaoxing 312000 Peoples R China
time series data are ubiquitous in the operation of cyber-physical systems (CPS), encompassing network traffic data, sensor measurements, and other relevant data streams. Intelligent anomaly detection methods are cruc... 详细信息
来源: 评论
Deep time series anomaly detection with Local Temporal Pattern Learning
Deep Time Series Anomaly Detection with Local Temporal Patte...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Li, Yizhou Wang, Yijie Xu, Hongzuo Zhou, Xiaohui National Key Laboratory of Parallel and Distributed Computing College of Computer Science and Technology National University of Defense Technology Changsha410073 China Beijing100091 China
Self-supervised time series anomaly detection (TSAD) demonstrates remarkable performance improvement by extracting high-level data semantics through proxy tasks. Nonetheless, most existing self-supervised TSAD techniq... 详细信息
来源: 评论
MulGad: Multi-granularity contrastive learning for multivariate time series anomaly detection
收藏 引用
INFORMATION FUSION 2025年 119卷
作者: Xiao, Bo-Wen Xing, Hong-Jie Li, Chun-Guo Hebei Univ Coll Math & Informat Sci Hebei Key Lab Machine Learning & Computat Intellig Baoding 071002 Peoples R China Hebei Univ Coll Cyber Secur & Comp Baoding 071002 Peoples R China
Since the normal patterns of time series change dynamically over time, unsupervised time series anomaly detection methods have to face the overfitting problem. Although some approaches based on contrastive learning tr... 详细信息
来源: 评论
Applying quantum autoencoders for time series anomaly detection
收藏 引用
QUANTUM MACHINE INTELLIGENCE 2025年 第1期7卷 1-21页
作者: Frehner, Robin Stockinger, Kurt Zurich Univ Appl Sci Zurich Switzerland
anomaly detection is an important problem with applications in various domains such as fraud detection, pattern recognition, or medical diagnosis. Several algorithms have been introduced using classical computing appr... 详细信息
来源: 评论
Reevaluating the Potential of a Vanilla Transformer Encoder for Unsupervised time series anomaly detection in Sensor Applications
收藏 引用
SENSORS 2025年 第8期25卷 2510-2510页
作者: Han, Chan Sik Kim, Hyungwon Lee, Keon Myung Chungbuk Natl Univ Dept Comp Sci Cheongju 28644 South Korea Chungbuk Natl Univ Dept Elect Engn Cheongju 28644 South Korea
Sensors generate extensive time series data across various domains, and effective methods for detecting anomalies in such data are still in high demand. Unsupervised time series anomaly detection provides practical ap... 详细信息
来源: 评论
FEFM: Feature Extraction and Fusion Module for Enhanced time series anomaly detection  25
FEFM: Feature Extraction and Fusion Module for Enhanced Time...
收藏 引用
Proceedings of the 40th ACM/SIGAPP Symposium on Applied Computing
作者: Seong Hyun Jeon Keon Kim Yong Suk Choi Hanyang University Seoul Republic of Korea
time series data are utilized across various fields, including finance, healthcare, and manufacturing, where system reliability is crucial. Accordingly, extensive research on time series anomaly detection has been con... 详细信息
来源: 评论