咨询与建议

限定检索结果

文献类型

  • 112 篇 期刊文献
  • 94 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 208 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 190 篇 工学
    • 121 篇 计算机科学与技术...
    • 70 篇 电气工程
    • 33 篇 控制科学与工程
    • 26 篇 信息与通信工程
    • 16 篇 软件工程
    • 13 篇 仪器科学与技术
    • 10 篇 石油与天然气工程
    • 10 篇 环境科学与工程(可...
    • 8 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 4 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 水利工程
    • 4 篇 航空宇航科学与技...
    • 2 篇 光学工程
    • 2 篇 核科学与技术
  • 33 篇 理学
    • 14 篇 物理学
    • 9 篇 化学
    • 8 篇 数学
    • 6 篇 生物学
    • 2 篇 地球物理学
  • 15 篇 管理学
    • 14 篇 管理科学与工程(可...
  • 13 篇 医学
    • 11 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 2 篇 农学
  • 1 篇 经济学
  • 1 篇 文学

主题

  • 208 篇 training algorit...
  • 32 篇 neural network
  • 27 篇 artificial neura...
  • 15 篇 neural networks
  • 9 篇 particle swarm o...
  • 8 篇 artificial neura...
  • 6 篇 deep learning
  • 6 篇 neural nets
  • 6 篇 machine learning
  • 6 篇 training
  • 5 篇 modeling
  • 5 篇 feature extracti...
  • 5 篇 multilayer perce...
  • 5 篇 forecasting
  • 4 篇 generative adver...
  • 4 篇 process neural n...
  • 4 篇 quasi-newton met...
  • 4 篇 power quality di...
  • 4 篇 learning (artifi...
  • 4 篇 recurrent neural...

机构

  • 3 篇 hebei univ engn ...
  • 3 篇 univ dayton dept...
  • 2 篇 lab cent lyonnai...
  • 2 篇 joint inst nucl ...
  • 2 篇 assiut univ dept...
  • 2 篇 univ calif san d...
  • 2 篇 ivanovo state un...
  • 2 篇 univ dubrovnik d...
  • 2 篇 univ tokyo grad ...
  • 2 篇 shandong univ sc...
  • 2 篇 south china univ...
  • 2 篇 univ technol com...
  • 2 篇 forth inst appl ...
  • 1 篇 govt arts coll d...
  • 1 篇 stanford univ de...
  • 1 篇 rabdan acad fac ...
  • 1 篇 univ teknol petr...
  • 1 篇 iasbs dept chem ...
  • 1 篇 dalian ocean uni...
  • 1 篇 pt pln persero e...

作者

  • 6 篇 ninomiya hiroshi
  • 5 篇 xu shaohua
  • 3 篇 gong n
  • 3 篇 taha tarek m.
  • 3 篇 liu kun
  • 3 篇 paul dipjyoti
  • 3 篇 pantazis yannis
  • 3 篇 zeng xiaoqin
  • 3 篇 hasan raqibul
  • 3 篇 mahboubi shahrza...
  • 3 篇 ng wing w. y.
  • 3 篇 bertrand-krajews...
  • 3 篇 stylianou yannis
  • 3 篇 denoeux t
  • 3 篇 takamichi shinno...
  • 2 篇 stadnik a
  • 2 篇 vilovic ivan
  • 2 篇 subbotin s
  • 2 篇 chen chen
  • 2 篇 saito yuki

语言

  • 190 篇 英文
  • 12 篇 其他
  • 6 篇 中文
检索条件"主题词=Training Algorithm"
208 条 记 录,以下是61-70 订阅
排序:
Memristor Crossbar Based Unsupervised training
Memristor Crossbar Based Unsupervised Training
收藏 引用
IEEE National Aerospace and Electronics Conference (NAECON)
作者: Hasan, Raqibul Taha, Tarek M. Univ Dayton Dept Elect & Comp Engn Dayton OH 45469 USA
Several big data applications are particularly focused on classification and clustering tasks. Robustness of such system depends on how well it can extract important features from the raw data. For big data processing... 详细信息
来源: 评论
Efficient Serial and Parallel SVM training using Coordinate Descent
Efficient Serial and Parallel SVM Training using Coordinate ...
收藏 引用
IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)
作者: Liossis, Emmanuel Natl Tech Univ Athens Sch Elect & Comp Engn Intelligent Syst Lab Athens Greece
Eliminating the bias term of the Support Vector Machine (SVM) classifier permits substancial simplification to training algorithms. Using this elimination, the optimization invloved in training can be decomposed to up... 详细信息
来源: 评论
Neural Network training based on quasi-Newton Method using Nesterov's Accelerated Gradient
Neural Network Training based on quasi-Newton Method using N...
收藏 引用
IEEE Region 10 Conference (TENCON)
作者: Ninomiya, Hiroshi Shonan Inst Technol Dept Informat Sci 1-1-25 Tsujido Nishikaigan Fujisawa Kanagawa 2518511 Japan
This paper describes a novel quasi-Newton (QN) based accelerated technique for training of neural networks. Recently, Nesterov's accelerated gradient method has been utilized for training the neural networks. In t... 详细信息
来源: 评论
Architecture optimization, training convergence and network estimation robustness of a fully connected recurrent neural network
Architecture optimization, training convergence and network ...
收藏 引用
作者: Wang, Xiaoyu Clemson University
学位级别:Ph.D.
Recurrent neural networks (RNN) have been rapidly developed in recent years. Applications of RNN can be found in system identification, optimization, image processing, pattern reorganization, classification, clusterin... 详细信息
来源: 评论
Using Particle Swarm Optimization in training Neural Network for Indoor Field Strength Prediction
Using Particle Swarm Optimization in Training Neural Network...
收藏 引用
51st International Symposium ELMAR
作者: Vilovic, Ivan Burum, Niksa Milic, Dorde Univ Dubrovnik Dubrovnik Croatia
This paper presents a comparison of results obtained from neural network training by backpropagation and particle swarm optimization (PSO) algorithms. The neural network model has been developed for field strength pre... 详细信息
来源: 评论
A Novel Quasi-Newton-Based training Using Nesterov's Accelerated Gradient for Neural Networks  25th
A Novel Quasi-Newton-Based Training Using Nesterov's Acceler...
收藏 引用
25th International Conference on Artificial Neural Networks (ICANN)
作者: Ninomiya, Hiroshi Shonan Inst Technol Dept Informat Sci Fujisawa Kanagawa Japan
Neural networks have been recognized as a useful tool for the function approximation problems with high-nonlinearity [1]. training is the most important step in developing a neural network model. Gradient based algori... 详细信息
来源: 评论
Evaluating the training Dynamics of a CMOS based Synapse
Evaluating the Training Dynamics of a CMOS based Synapse
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ghani, Arfan McDaid, Liam J. Belatreche, Ammar Kelly, Peter Hall, Steve Dowrick, Tom Huang, Shou Marsland, John Smith, Andy Univ Ulster Intelligent Syst Res Ctr Magee Campus Derry BT48 7JL North Ireland Univ Liverpool Liverpool L693GJ Merseyside England
Recent work by the authors proposed compact low power synapses in hardware, based on the charge-coupling principle, that can be configured to yield a static or dynamic response. The focus of this work is to investigat... 详细信息
来源: 评论
Robust training of Microwave Neural Network Models Using Combined Global/Local Optimization Techniques
Robust Training of Microwave Neural Network Models Using Com...
收藏 引用
2008 IEEE MTT-S International Microwave Symposium Digest
作者: Ninomiya, Hiroshi Wan, Shan Kabir, Humayun Zhang, Xin Zhang, Q. J. Shonan Inst Technol Dept Informat Sci Fujisawa Kanagawa 2518511 Japan Carleton Univ Dept Elect Ottawa ON K1S 5B6 Canada
We present a new technique for training microwave neural network models. The proposed technique combines quasi-Newton algorithm with a recent global optimization algorithm called Particle Swarm Optimization (PSO). The... 详细信息
来源: 评论
A training method for SpikeProp without redundant spikes -Removing unnecessary sub-connections during training-  12
A training method for SpikeProp without redundant spikes -Re...
收藏 引用
12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)
作者: Nakayama, Takutoshi Matsumoto, Takashi Takase, Haruhiko Kawanaka, Hiroharu Tsuruoka, Shinji Mie Univ Grad Sch Engn Tsu Mie 5148507 Japan Mie Univ Tsu Mie 5148507 Japan
SpikeProp, which is proposed by Bohte and extended by Booij, is a type of multi-layer networks of spiking neurons. Our research group has proposed a training algorithm for SpikeProp without redundant output spikes. Ho... 详细信息
来源: 评论
A new approach for spatio-temporal interface treatment in fluid-solid interaction using artificial neural networks employing coupled partitioned fluid-solid solvers
收藏 引用
JOURNAL OF FLUIDS AND STRUCTURES 2024年 131卷
作者: Mazhar, Farrukh Javed, Ali Natl Univ Sci & Technol Coll Aeronaut Engn Dept Aerosp Engn Islamabad 44000 Pakistan
Partitioned fluid-solid interaction (FSI) problems involving non-conforming grids pose formidable challenge in interface treatment, especially for information exchange, interface tracking, and field variable interpola... 详细信息
来源: 评论