咨询与建议

限定检索结果

文献类型

  • 113 篇 期刊文献
  • 94 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 208 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 191 篇 工学
    • 121 篇 计算机科学与技术...
    • 71 篇 电气工程
    • 33 篇 控制科学与工程
    • 26 篇 信息与通信工程
    • 16 篇 软件工程
    • 13 篇 仪器科学与技术
    • 10 篇 石油与天然气工程
    • 10 篇 环境科学与工程(可...
    • 8 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 水利工程
    • 4 篇 航空宇航科学与技...
    • 3 篇 生物工程
    • 2 篇 光学工程
  • 34 篇 理学
    • 15 篇 物理学
    • 9 篇 化学
    • 8 篇 数学
    • 6 篇 生物学
    • 2 篇 地球物理学
  • 15 篇 管理学
    • 14 篇 管理科学与工程(可...
  • 13 篇 医学
    • 11 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 3 篇 农学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 208 篇 training algorit...
  • 32 篇 neural network
  • 27 篇 artificial neura...
  • 15 篇 neural networks
  • 9 篇 particle swarm o...
  • 8 篇 artificial neura...
  • 6 篇 deep learning
  • 6 篇 neural nets
  • 6 篇 machine learning
  • 6 篇 training
  • 5 篇 modeling
  • 5 篇 feature extracti...
  • 5 篇 multilayer perce...
  • 5 篇 forecasting
  • 4 篇 generative adver...
  • 4 篇 process neural n...
  • 4 篇 quasi-newton met...
  • 4 篇 power quality di...
  • 4 篇 learning (artifi...
  • 4 篇 recurrent neural...

机构

  • 3 篇 hebei univ engn ...
  • 3 篇 univ dayton dept...
  • 2 篇 lab cent lyonnai...
  • 2 篇 joint inst nucl ...
  • 2 篇 assiut univ dept...
  • 2 篇 univ calif san d...
  • 2 篇 ivanovo state un...
  • 2 篇 univ dubrovnik d...
  • 2 篇 univ tokyo grad ...
  • 2 篇 shandong univ sc...
  • 2 篇 south china univ...
  • 2 篇 univ technol com...
  • 2 篇 forth inst appl ...
  • 1 篇 govt arts coll d...
  • 1 篇 stanford univ de...
  • 1 篇 rabdan acad fac ...
  • 1 篇 univ teknol petr...
  • 1 篇 iasbs dept chem ...
  • 1 篇 dalian ocean uni...
  • 1 篇 pt pln persero e...

作者

  • 6 篇 ninomiya hiroshi
  • 5 篇 xu shaohua
  • 3 篇 gong n
  • 3 篇 taha tarek m.
  • 3 篇 liu kun
  • 3 篇 paul dipjyoti
  • 3 篇 pantazis yannis
  • 3 篇 zeng xiaoqin
  • 3 篇 hasan raqibul
  • 3 篇 mahboubi shahrza...
  • 3 篇 ng wing w. y.
  • 3 篇 bertrand-krajews...
  • 3 篇 stylianou yannis
  • 3 篇 denoeux t
  • 3 篇 takamichi shinno...
  • 2 篇 stadnik a
  • 2 篇 vilovic ivan
  • 2 篇 subbotin s
  • 2 篇 chen chen
  • 2 篇 saito yuki

语言

  • 189 篇 英文
  • 13 篇 其他
  • 6 篇 中文
检索条件"主题词=Training algorithm"
208 条 记 录,以下是131-140 订阅
排序:
The Hierarchical Hybrid Fuzzy-Neural Network Based on Lasso Function and Its Application to Classification of Remote Sensing Images
收藏 引用
Chinese Journal of Geophysics 2013年 第4期54卷 590-598页
作者: Xian-Chuan YU Sha DAI Dan HU Qi-Yu JIANG College of Information Science and Technology Beijing Normal University Beijing 100875 China Southeast Fujian Geologic Party Quanzhou 362021 China
In this paper, a new algorithm for the hierarchical hybrid fuzzy-neural network model is proposed. The Takagi-Sugeno model and triangular membership function are adopted in the fuzzy system, and the Lasso function of ... 详细信息
来源: 评论
Designing Stepped Impedance Microstrip Low-Pass Filters Using Artificial Neural Network at 1.8 GHz
Designing Stepped Impedance Microstrip Low-Pass Filters Usin...
收藏 引用
International Conference on Communication Systems and Network Technologies
作者: Vivek Singh Kushwah Geetam S. Tomar Sarita Singh Bhadauria Dept. of Electronics Amity School of Engineering & Technology Gwalior India Machine Intelligence Research Labs Gwalior 474011 India Dept. of Electronics Madhav Institute of Technology& Science Gwalior India
In this paper a design technique for a Stepped impedance Microstrip Low-pass filters is presented by using the artificial neural network (ANN) modeling method. Required dimensions of the microstrip filter layout are u... 详细信息
来源: 评论
F-SVC: A SIMPLE AND FAST training algorithm SOFT MARGIN SUPPORT VECTOR CLASSIFICATION
F-SVC: A SIMPLE AND FAST TRAINING ALGORITHM SOFT MARGIN SUPP...
收藏 引用
IEEE Workshop on Machine Learning for Signal Processing
作者: Tohme, Mireille Lengelle, Regis FORENAP Frp 27 Rue 4Eme RSM F-68250 Rouffach France Univ technol Troyes Inst Charles Delaunay LM2S FRE CNRS 2848 F-10010 Troyes France
Support Vector Machines have obtained much success in machine learning. But their training require to solve a quadratic optimization problem so that training time increases dramatically with the increase of the traini... 详细信息
来源: 评论
Optimal location of interline power flow controller for controlling multi transmission line: A new integrated technique
收藏 引用
Frontiers of Electrical and Electronic Engineering in China 2012年 第4期7卷 447-458页
作者: B. KARTHIK I. ALAGARASAN S. CHANDRASEKAR Department of Electrical and Electronics Engineering Sona College ofTechnology Salem India Department of Electrical and Electronics Engineering Kavery Engineer-ing College Salem India
In this paper, an interline power flow controller (IPFC) is used for controlling multi transmission lines. However, the optimal placement of IPFC in the transmis-sion line is a major problem. Thus, we use a combinat... 详细信息
来源: 评论
Evaluating the training Dynamics of a CMOS based Synapse
Evaluating the Training Dynamics of a CMOS based Synapse
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ghani, Arfan McDaid, Liam J. Belatreche, Ammar Kelly, Peter Hall, Steve Dowrick, Tom Huang, Shou Marsland, John Smith, Andy Univ Ulster Intelligent Syst Res Ctr Magee Campus Derry BT48 7JL North Ireland Univ Liverpool Liverpool L693GJ Merseyside England
Recent work by the authors proposed compact low power synapses in hardware, based on the charge-coupling principle, that can be configured to yield a static or dynamic response. The focus of this work is to investigat... 详细信息
来源: 评论
Reduced symmetric self-constructing fuzzy neural network beamforming detectors
收藏 引用
IET MICROWAVES ANTENNAS & PROPAGATION 2011年 第6期5卷 676-684页
作者: Chang, Y-J Ho, C-L Natl Cent Univ Dept Commun Engn Tao Yuan 32054 Taiwan
Beamforming technology has been widely used in smart antenna systems that can increase the user's capacity and coverage in modern communication products. In this study, a powerful reduced symmetric self-constructi... 详细信息
来源: 评论
On Optimal Control Scheme Based on Feedforward and Inverse Models of Artificial Neural Network
On Optimal Control Scheme Based on Feedforward and Inverse M...
收藏 引用
International Conference on Computer Science and Education (CSE 2011)
作者: Qu, Dongcai Zhao, Guorong Cao, Dong Lu, Jianhua Lu, Binwen Dept Control Engn Naval Aeronaut Yantai 264001 Peoples R China Naval Fly Acad PT-125000 Huludao Peoples R China
The mostly optimum control questions were based on precise mathematical model of the controlled object at present, and only aimed at the few parameters implementation optimization control. Because it was very difficul... 详细信息
来源: 评论
Optimistic bias in the assessment of high dimensional classifiers with a limited dataset
Optimistic bias in the assessment of high dimensional classi...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Chen, Weijie Brown, David G. US FDA Silver Spring MD 20993 USA
It is commonly recognized that using the same dataset for training and testing the classifier introduces optimistic bias in estimating classifier performance. However, bias of the same kind may still exist even when i... 详细信息
来源: 评论
On Optimal Control Scheme Based on Feedforward and Inverse Models of Artificial Neural Network
On Optimal Control Scheme Based on Feedforward and Inverse M...
收藏 引用
Advances in Information Technology and Education
作者: Dongcai Qu Guorong Zhao Dong Cao Jianhua Lu Binwen Lu Department of Control Engineering of Naval Aeronautical and Astronautical University The Naval Fly Academy
The mostly optimum control questions were based on precise mathematical model of the controlled object at present, and only aimed at the few parameters implementation optimization control. Because it was very difficul... 详细信息
来源: 评论
Weak Classifiers Selecting based on PSO in Ada Boost
Weak Classifiers Selecting based on PSO in Ada Boost
收藏 引用
2011 International Conference on Future Software Engineering and Multimedia Engineering(FSME 2011)
作者: Rui Li Jiurui Zhang Li Mao Dept. of Computer and Communication Lanzhou University of Technology
Weak classifiers selection plays an important role in face detection based on Ada Boost algorithmMore discriminative weak classifiers can not only reduce training time but also enhance classification accuracyIn this p... 详细信息
来源: 评论