咨询与建议

限定检索结果

文献类型

  • 113 篇 期刊文献
  • 94 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 208 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 191 篇 工学
    • 121 篇 计算机科学与技术...
    • 71 篇 电气工程
    • 33 篇 控制科学与工程
    • 26 篇 信息与通信工程
    • 16 篇 软件工程
    • 13 篇 仪器科学与技术
    • 10 篇 石油与天然气工程
    • 10 篇 环境科学与工程(可...
    • 8 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 水利工程
    • 4 篇 航空宇航科学与技...
    • 3 篇 生物工程
    • 2 篇 光学工程
  • 34 篇 理学
    • 15 篇 物理学
    • 9 篇 化学
    • 8 篇 数学
    • 6 篇 生物学
    • 2 篇 地球物理学
  • 15 篇 管理学
    • 14 篇 管理科学与工程(可...
  • 13 篇 医学
    • 11 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 3 篇 农学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 208 篇 training algorit...
  • 32 篇 neural network
  • 27 篇 artificial neura...
  • 15 篇 neural networks
  • 9 篇 particle swarm o...
  • 8 篇 artificial neura...
  • 6 篇 deep learning
  • 6 篇 neural nets
  • 6 篇 machine learning
  • 6 篇 training
  • 5 篇 modeling
  • 5 篇 feature extracti...
  • 5 篇 multilayer perce...
  • 5 篇 forecasting
  • 4 篇 generative adver...
  • 4 篇 process neural n...
  • 4 篇 quasi-newton met...
  • 4 篇 power quality di...
  • 4 篇 learning (artifi...
  • 4 篇 recurrent neural...

机构

  • 3 篇 hebei univ engn ...
  • 3 篇 univ dayton dept...
  • 2 篇 lab cent lyonnai...
  • 2 篇 joint inst nucl ...
  • 2 篇 assiut univ dept...
  • 2 篇 univ calif san d...
  • 2 篇 ivanovo state un...
  • 2 篇 univ dubrovnik d...
  • 2 篇 univ tokyo grad ...
  • 2 篇 shandong univ sc...
  • 2 篇 south china univ...
  • 2 篇 univ technol com...
  • 2 篇 forth inst appl ...
  • 1 篇 govt arts coll d...
  • 1 篇 stanford univ de...
  • 1 篇 rabdan acad fac ...
  • 1 篇 univ teknol petr...
  • 1 篇 iasbs dept chem ...
  • 1 篇 dalian ocean uni...
  • 1 篇 pt pln persero e...

作者

  • 6 篇 ninomiya hiroshi
  • 5 篇 xu shaohua
  • 3 篇 gong n
  • 3 篇 taha tarek m.
  • 3 篇 liu kun
  • 3 篇 paul dipjyoti
  • 3 篇 pantazis yannis
  • 3 篇 zeng xiaoqin
  • 3 篇 hasan raqibul
  • 3 篇 mahboubi shahrza...
  • 3 篇 ng wing w. y.
  • 3 篇 bertrand-krajews...
  • 3 篇 stylianou yannis
  • 3 篇 denoeux t
  • 3 篇 takamichi shinno...
  • 2 篇 stadnik a
  • 2 篇 vilovic ivan
  • 2 篇 subbotin s
  • 2 篇 chen chen
  • 2 篇 saito yuki

语言

  • 189 篇 英文
  • 13 篇 其他
  • 6 篇 中文
检索条件"主题词=Training algorithm"
208 条 记 录,以下是31-40 订阅
排序:
Nonlinear Neural Network Based Forecasting Model for Predicting COVID-19 Cases
收藏 引用
NEURAL PROCESSING LETTERS 2023年 第1期55卷 171-191页
作者: Namasudra, Suyel Dhamodharavadhani, S. Rathipriya, R. Natl Inst Technol Patna Dept Comp Sci & Engn Patna Bihar India Periyar Univ Dept Comp Sci Salem India
The recent COVID-19 outbreak has severely affected people around the world. There is a need of an efficient decision making tool to improve awareness about the spread of COVID-19 infections among the common public. An... 详细信息
来源: 评论
Prediction of abrasive wears behavior of dental composites using an artificial neural network
收藏 引用
COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING 2023年 第6期26卷 710-720页
作者: Suryawanshi, Abhijeet Shivaji Behera, Niranjana VIT Sch Mech Engn SMEC Vellore Tamil Nadu India
Resin composites are widely used as dental restorative materials since dental parts are subjected to prolonged wear and ultimately need to be replaced. The objective of this study is to analyze the potential of the fe... 详细信息
来源: 评论
Study on Stochastic Gradient Descent Without Explicit Error Backpropagation with Momentum  2
Study on Stochastic Gradient Descent Without Explicit Error ...
收藏 引用
2nd IEEE Conference on Artificial Intelligence (CAI)
作者: Mahboubi, Shahrzad Ninomiya, Hiroshi Shonan Inst Technol Dept Informat Fujisawa Kanagawa Japan
This paper describes a novel training algorithm based on the Stochastic Gradient Descent method without explicit error backpropagation (SWDP) with momentum term for faster neural network training.
来源: 评论
An Enhanced Swarm Intelligence based training algorithm for RBF Neural Networks in Function Approximation  2
An Enhanced Swarm Intelligence based Training Algorithm for ...
收藏 引用
2014 Second World Conference on Complex Systems (WCCS)
作者: Salem, Mohammed Zingla, Meriem Amina Khelfi, Mohamed Faycal Univ Mascara Fac Sci & Technol Mascara Algeria Univ Carthage LISI Res Lab INSAT Tunis Tunisia Univ Fac Appl & Exact Sci Oran Algeria
This paper is dedicated to the presentation of enhanced swarm intelligence based training algorithm for Radial basis functions neural networks. The proposed training algorithm (ABC-PP) is hybridization between the Art... 详细信息
来源: 评论
A noise injection strategy for graph autoencoder training
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2021年 第10期33卷 4807-4814页
作者: Wang, Yingfeng Xu, Biyun Kwak, Myungjae Zeng, Xiaoqin Middle Georgia State Univ Dept Informat Technol Macon GA 31206 USA Beijing Kubao Technol Co Beijing 100124 Peoples R China Hohai Univ Inst Intelligence Sci & Technol Nanjing 210098 Jiangsu Peoples R China Univ Tennessee Dept Comp Sci & Engn Chattanooga TN 37403 USA
Graph autoencoder can map graph data into a low-dimensional space. It is a powerful graph embedding method applied in graph analytics to lower the computational cost. Researchers have developed different graph autoenc... 详细信息
来源: 评论
training of Convolutional Neural Networks for Image Classification with Fully Decoupled Extended Kalman Filter
收藏 引用
algorithmS 2024年 第6期17卷 243页
作者: Gaytan, Armando Begovich-Mendoza, Ofelia Arana-Daniel, Nancy Inst Politecn Nacl Ctr Invest & Estudios Avanzados Unidad Guadalajara Zapopan 45019 Jalisco Mexico Univ Guadalajara Ctr Univ Ciencias Exactas & Ingn Guadalajara 44430 Jalisco Mexico
First-order algorithms have long dominated the training of deep neural networks, excelling in tasks like image classification and natural language processing. Now there is a compelling opportunity to explore alternati... 详细信息
来源: 评论
A review of research on co-training
收藏 引用
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE 2023年 第18期35卷
作者: Ning, Xin Wang, Xinran Xu, Shaohui Cai, Weiwei Zhang, Liping Yu, Lina Li, Wenfa Chinese Acad Sci Inst Semicond Beijing Peoples R China Cognit Comp Technol Joint Lab Wave Grp Beijing Peoples R China Shenzhen Wave Kingdom Co Ltd Shenzhen Peoples R China Beijing Univ Posts & Telecommun Beijing Peoples R China Cent South Univ Forestry & Technol Sch Logist & Transportat Changsha Peoples R China Beijing Union Univ Coll Robot Beijing Peoples R China
Co-training algorithm is one of the main methods of semi-supervised learning in machine learning, which explores the effective information in unlabeled data by multi-learner collaboration. Based on the development of ... 详细信息
来源: 评论
Landslide susceptibility mapping at Ovack-Karabuk (Turkey) using different artificial neural network models: comparison of training algorithms
收藏 引用
BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT 2019年 第1期78卷 89-102页
作者: Can, Asli Dagdelenler, Gulseren Ercanoglu, Murat Sonmez, Harun Hacettepe Univ Dept Geol Engn TR-06800 Ankara Turkey
This study aims to investigate the performances of different training algorithms used for an artificial neural network (ANN) method to produce landslide susceptibility maps. For this purpose, Ovack region (southeast o... 详细信息
来源: 评论
Enhancing anomaly detection: A comprehensive approach with MTBO feature selection and TVETBO-Optimized - Optimized Quad-LSTM classification
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2024年 第PartA期119卷
作者: Reddy, N. V. Raja Sekhar Divya, N. Sree Jagadesh, B. Gandikota, Ramu Lella, Kranthi Kumar Pydala, Bhasha Vatambeti, Ramesh MLR Inst Technol Dept Informat Technol Hyderabad 500043 India Mahatma Gandhi Inst Technol Dept Informat Technol Hyderabad India VIT AP Univ Sch Comp Sci & Engn Vijayawada India Narsimha Reddy Engn Coll Dept Comp Sci & Engn Hyderabad 500075 India Mohan Babu Univ Dept Data Sci Tirupati India
The rapid growth of computer networks has heightened system vulnerabilities, challenging traditional Machine Learning (ML) techniques in network anomaly detection due to the abundance of data, imbalanced attack classe... 详细信息
来源: 评论
Food Cooking Process Modeling With Neural Networks
收藏 引用
IEEE ACCESS 2024年 12卷 175866-175881页
作者: Fananas-Anaya, Javier Lopez-Nicolas, Gonzalo Sagues, Carlos Llorente, Sergio Univ Zaragoza Inst Invest Ingn Aragon I3A Zaragoza 50018 Spain BSH Home Appliances Grp Prod Div Cookers Res & Dev Dept Induct Technol Zaragoza 50016 Spain
Food cooking process are complex dynamical systems to model. In the state of the art we find that a good solution consists of physics-based finite element models (FEM). FEM models, although being very accurate, have a... 详细信息
来源: 评论