咨询与建议

限定检索结果

文献类型

  • 113 篇 期刊文献
  • 94 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 209 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 191 篇 工学
    • 121 篇 计算机科学与技术...
    • 71 篇 电气工程
    • 33 篇 控制科学与工程
    • 26 篇 信息与通信工程
    • 16 篇 软件工程
    • 13 篇 仪器科学与技术
    • 10 篇 石油与天然气工程
    • 10 篇 环境科学与工程(可...
    • 8 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 水利工程
    • 4 篇 航空宇航科学与技...
    • 3 篇 生物工程
    • 2 篇 光学工程
  • 34 篇 理学
    • 15 篇 物理学
    • 9 篇 化学
    • 8 篇 数学
    • 6 篇 生物学
    • 2 篇 地球物理学
  • 15 篇 管理学
    • 14 篇 管理科学与工程(可...
  • 13 篇 医学
    • 11 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 3 篇 农学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 209 篇 training algorit...
  • 32 篇 neural network
  • 27 篇 artificial neura...
  • 15 篇 neural networks
  • 9 篇 particle swarm o...
  • 8 篇 artificial neura...
  • 6 篇 deep learning
  • 6 篇 neural nets
  • 6 篇 machine learning
  • 6 篇 training
  • 5 篇 modeling
  • 5 篇 feature extracti...
  • 5 篇 multilayer perce...
  • 5 篇 forecasting
  • 4 篇 generative adver...
  • 4 篇 process neural n...
  • 4 篇 quasi-newton met...
  • 4 篇 power quality di...
  • 4 篇 learning (artifi...
  • 4 篇 recurrent neural...

机构

  • 3 篇 hebei univ engn ...
  • 3 篇 univ dayton dept...
  • 2 篇 lab cent lyonnai...
  • 2 篇 joint inst nucl ...
  • 2 篇 assiut univ dept...
  • 2 篇 univ calif san d...
  • 2 篇 ivanovo state un...
  • 2 篇 univ dubrovnik d...
  • 2 篇 univ tokyo grad ...
  • 2 篇 shandong univ sc...
  • 2 篇 south china univ...
  • 2 篇 univ technol com...
  • 2 篇 forth inst appl ...
  • 1 篇 govt arts coll d...
  • 1 篇 stanford univ de...
  • 1 篇 rabdan acad fac ...
  • 1 篇 univ teknol petr...
  • 1 篇 iasbs dept chem ...
  • 1 篇 dalian ocean uni...
  • 1 篇 pt pln persero e...

作者

  • 6 篇 ninomiya hiroshi
  • 5 篇 xu shaohua
  • 3 篇 gong n
  • 3 篇 taha tarek m.
  • 3 篇 liu kun
  • 3 篇 paul dipjyoti
  • 3 篇 pantazis yannis
  • 3 篇 zeng xiaoqin
  • 3 篇 hasan raqibul
  • 3 篇 mahboubi shahrza...
  • 3 篇 ng wing w. y.
  • 3 篇 bertrand-krajews...
  • 3 篇 stylianou yannis
  • 3 篇 denoeux t
  • 3 篇 takamichi shinno...
  • 2 篇 stadnik a
  • 2 篇 vilovic ivan
  • 2 篇 subbotin s
  • 2 篇 chen chen
  • 2 篇 saito yuki

语言

  • 190 篇 英文
  • 13 篇 其他
  • 6 篇 中文
检索条件"主题词=Training algorithm"
209 条 记 录,以下是41-50 订阅
排序:
A fast algorithm for training a class of fuzzy neural networks
A fast algorithm for training a class of fuzzy neural networ...
收藏 引用
3rd World Congress on Intelligent Control and Automation
作者: Li, DM Liu, JQ Hu, HZ Harbin Inst Technol Harbin 150001 Peoples R China
A novel fast algorithm for traing a class of fuzzy neural networks (FNN) is studied. The proposed algorithm is named as Least Square-Simplex (LS-Simplex). The algorithm obtains the performance of global convergence an... 详细信息
来源: 评论
Improved prediction accuracy of biomass heating value using proximate analysis with various ANN training algorithms
收藏 引用
RESULTS IN ENGINEERING 2022年 16卷
作者: Veza, Ibham Irianto Panchal, Hitesh Paristiawan, Permana Andi Idris, Muhammad Fattah, I. M. Rizwanul Putra, Nicky R. Silambarasan, Rajendran Univ Teknol PETRONAS Dept Mech Engn Bandar Seri Iskandar 32610 Perak Darul Rid Malaysia Rabdan Acad Fac Resilence Dept Gen Educ Abu Dhabi U Arab Emirates Govt Engn Coll Dept Mech Engn Patan Gujarat India Natl Res & Innovat Agcy Res Ctr Met South Tangerang 15314 Banten Indonesia PT PLN Persero Engn & Technol Div Jakarta Indonesia Univ Technol Sydney Fac Engn & IT Ctr Technol Water & Wastewater Sch Civil & Environm Engn Ultimo NSW 2007 Australia Univ Teknol Malaysia Ctr Lipid Engn & Appl Res CLEAR Ibnu Sina Inst Sci & Ind Res Johor Baharu 81310 Malaysia JKK Nattraja Coll Engn & Technol Dept Mech Al Engn Namakkal India
The conventional experimental methods to determine biomass heating value are laborious and costly. Numerous correlations to estimate biomass' higher heating values have been proposed using proximate analysis. Rece... 详细信息
来源: 评论
Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography
收藏 引用
JOURNAL OF CHEMOMETRICS 2008年 第1-2期22卷 106-113页
作者: Bolanca, Tornislav Cerjan-Stefanovic, Stefica Ukic, Sime Rogosic, Marko Lusa, Melita Univ Zagreb Fac Chem Engn & Technol Zagreb 10000 Croatia
The reliability of predicted separations in ion chromatography depends mainly on the accuracy of retention predictions. Any model able to improve this accuracy will yield predicted optimal separations closer to the re... 详细信息
来源: 评论
A fast training method for memristor crossbar based multi-layer neural networks
收藏 引用
ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING 2017年 第3期93卷 443-454页
作者: Hasan, Raqibul Taha, Tarek M. Yakopcic, Chris Univ Dayton Dept Elect & Comp Engn Dayton OH 45469 USA
Memristor crossbar arrays carry out multiply-add operations in parallel in the analog domain which is the dominant operation in a neural network application. On-chip training of memristor neural network systems have t... 详细信息
来源: 评论
Comparative study of various training algorithms of artificial neural network
Comparative study of various training algorithms of artifici...
收藏 引用
International Conference on Advances in Computing, Communication Control and Networking
作者: Pragati Jaiswal Nikhil Kumar Gupta A. Ambikapathy Department of Information Technology Galgotias College of Engineering and Technology Greater Noida India Department of Electrical and Electronics Engineering Galgotias College of Engineering and Technology Greater Noida India
The idea of creating intelligent system has fascinated us with the advent of computer. The artificial neural network is a methodology for the development of intelligent system which can emulate as humans. Increasingly... 详细信息
来源: 评论
A noise injection strategy for graph autoencoder training
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2021年 第10期33卷 4807-4814页
作者: Wang, Yingfeng Xu, Biyun Kwak, Myungjae Zeng, Xiaoqin Middle Georgia State Univ Dept Informat Technol Macon GA 31206 USA Beijing Kubao Technol Co Beijing 100124 Peoples R China Hohai Univ Inst Intelligence Sci & Technol Nanjing 210098 Jiangsu Peoples R China Univ Tennessee Dept Comp Sci & Engn Chattanooga TN 37403 USA
Graph autoencoder can map graph data into a low-dimensional space. It is a powerful graph embedding method applied in graph analytics to lower the computational cost. Researchers have developed different graph autoenc... 详细信息
来源: 评论
A novel neural network training framework with data assimilation
收藏 引用
JOURNAL OF SUPERCOMPUTING 2022年 第17期78卷 19020-19045页
作者: Chen, Chong Dou, Yixuan Chen, Jie Xue, Yaru China Univ Petr Coll Informat Sci & Engn Beijing 102249 Peoples R China
In recent years, the prosperity of deep learning has revolutionized the Artificial Neural Networks. However, the dependence of gradients and the offline training mechanism in the learning algorithms prevents the Artif... 详细信息
来源: 评论
MLPNN training via a Multiobjective Optimization of training Error and Stochastic Sensitivity
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2016年 第5期27卷 978-992页
作者: Yeung, Daniel S. Li, Jin-Cheng Ng, Wing W. Y. Chan, Patrick P. K. S China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China Guangdong Pharmaceut Univ Coll Med Informat Engn Guangzhou 510006 Guangdong Peoples R China
The training of a multilayer perceptron neural network (MLPNN) concerns the selection of its architecture and the connection weights via the minimization of both the training error and a penalty term. Different penalt... 详细信息
来源: 评论
Model and training of QNN with weight
收藏 引用
NEURAL PROCESSING LETTERS 2006年 第3期24卷 261-269页
作者: Zhou, Rigui Jiang, Nan Ding, Qiulin Nanjing Univ Aeronaut & Astronaut Dept Comp Sci & Technol Nanjing 210016 Jiangsu Peoples R China
Quantum Neural Network (QNN) is a burgeoning new field built upon the combination of classical neural networks and quantum computations, which has many problems needed to solve. Where the learning of the network weigh... 详细信息
来源: 评论
training TSVM with the proper number of positive samples
收藏 引用
PATTERN RECOGNITION LETTERS 2005年 第14期26卷 2187-2194页
作者: Wang, Y Huang, ST Shanghai Jiao Tong Univ Comp Sci & Engn Dept Shanghai 200030 Peoples R China
The transductive support vector machine (TSVM) is the transductive inference of the support vector machine. The TSVM utilizes the information carried by the unlabeled samples for classification and acquires better cla... 详细信息
来源: 评论