In the conventional carbon emission computation paradigm, the primary obligation falls on the electricity-generating side. However, according to the theory of carbon emission flow, the grid side and the user side are ...
详细信息
ISBN:
(纸本)9789819904044;9789819904051
In the conventional carbon emission computation paradigm, the primary obligation falls on the electricity-generating side. However, according to the theory of carbon emission flow, the grid side and the user side are the primary producers of carbon emissions and must carry the majority of the obligation. To minimize carbon dioxide emissions, it is required to apply the carbon emission flow analysis approach to move the carbon footprint from the power generation side to the grid side and the user side in order to create more efficient energy saving and emission reduction plans. In order to accomplish the low-carbon, energy-saving, and cost-effective operation of the power system, the carbon-energy composite flow is included in the objective function of reactive power optimization in this study. In order to solve the reactive power optimization model of carbon-energy composite flow and to demonstrate the superiority of the q-learningalgorithm of migration multi-searcher, this paper designs a carbon-energy composite flow optimization model on the IEEE 118 node system and adds six algorithms, such as the genetic algorithm, in order to solve the reactive power optimization model of carbon-energy composite flow. Come in for a simulation exercise, including comparison. The simulation and verification outcomes of an example demonstrate that the suggested model and algorithm may achieve economical, low-carbon, and secure functioning of the power system.
暂无评论