咨询与建议

限定检索结果

文献类型

  • 4 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 控制科学与工程
    • 2 篇 计算机科学与技术...
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 1 篇 理学
    • 1 篇 物理学
  • 1 篇 医学
    • 1 篇 特种医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 5 篇 unsupervised dat...
  • 3 篇 semi-supervised ...
  • 2 篇 bidirectional en...
  • 1 篇 variational auto...
  • 1 篇 deep learning
  • 1 篇 x-ray
  • 1 篇 distant speech r...
  • 1 篇 concrete bridges
  • 1 篇 osteoarthritis
  • 1 篇 total knee repla...
  • 1 篇 crack segmentati...
  • 1 篇 progressive grow...
  • 1 篇 unsupervised ada...
  • 1 篇 convolutional ne...

机构

  • 1 篇 univ sci & techn...
  • 1 篇 monash univ dept...
  • 1 篇 mit comp sci & a...
  • 1 篇 chinaso inc peop...
  • 1 篇 nyu ctr data sci...
  • 1 篇 new york univ la...
  • 1 篇 changzhou inst t...
  • 1 篇 changzhou inst t...
  • 1 篇 state key labora...
  • 1 篇 department of au...
  • 1 篇 xinhua news agcy...

作者

  • 1 篇 tang hao
  • 1 篇 hsu wei-ning
  • 1 篇 glass james
  • 1 篇 deng jianghua
  • 1 篇 lu ye
  • 1 篇 wang chenyang
  • 1 篇 tan jimin
  • 1 篇 chang gregory
  • 1 篇 fei long
  • 1 篇 liu xiaomeng
  • 1 篇 xiaomeng liu
  • 1 篇 che jiao
  • 1 篇 hua linxin
  • 1 篇 kun huang
  • 1 篇 deniz cem m.
  • 1 篇 zhang bofei
  • 1 篇 qiang ling
  • 1 篇 cho kyunghyun
  • 1 篇 long fei
  • 1 篇 ling qiang

语言

  • 5 篇 英文
检索条件"主题词=Unsupervised Data Augmentation"
5 条 记 录,以下是1-10 订阅
排序:
Enhanced unsupervised data augmentation for Emergency Events Detection and Classification  33
Enhanced Unsupervised Data Augmentation for Emergency Events...
收藏 引用
33rd Chinese Control and Decision Conference (CCDC)
作者: Liu, Xiaomeng Long, Fei Huang, Kun Ling, Qiang Chinaso Inc Beijing 100077 Peoples R China Xinhua News Agcy State Key Lab Media Convergence Prod Technol & Sy Beijing 100077 Peoples R China Univ Sci & Technol China Dept Automat Hefei 230026 Peoples R China
We propose to jointly detect and classify emergency events using a multi-class text classifier, which is a typical deep learning architecture with transformer modules and particularly employs Bidirectional Encoder Rep... 详细信息
来源: 评论
Semi-supervised Learning for Predicting Total Knee Replacement with unsupervised data augmentation
Semi-supervised Learning for Predicting Total Knee Replaceme...
收藏 引用
Conference on Medical Imaging - Computer-Aided Diagnosis
作者: Tan, Jimin Zhang, Bofei Cho, Kyunghyun Chang, Gregory Deniz, Cem M. NYU Ctr Data Sci 550 1St Ave New York NY 10003 USA New York Univ Langone Hlth Dept Radiol New York NY USA
Osteoarthritis (OA) is a chronic degenerative disorder of joints and is the most common reason leading to total knee joint replacement (TKR). In this paper, we implemented a semi-supervised learning approach based on ... 详细信息
来源: 评论
Enhanced unsupervised data augmentation for Emergency Events Detection and Classification
Enhanced Unsupervised Data Augmentation for Emergency Events...
收藏 引用
第33届中国控制与决策会议
作者: Xiaomeng Liu Fei Long Kun Huang Qiang Ling State Key Laboratory of Media Convergence Production Technology and Systems Xinhua News Agency Department of Automation University of Science and Technology of China
We propose to jointly detect and classify emergency events using a multi-class text classifier,which is a typical deep learning architecture with transformer modules and particularly employs Bidirectional Encoder Repr... 详细信息
来源: 评论
unsupervised PG-DDPM-augmented mixed dataset for training an accurate concrete bridge crack detection model under small samples
收藏 引用
MEASUREMENT 2025年 245卷
作者: Deng, Jianghua Hua, Linxin Lu, Ye Wang, Chenyang Che, Jiao Changzhou Inst Technol Sch Civil Engn & Architecture Changzhou 213032 Peoples R China Monash Univ Dept Civil Engn Melbourne Australia Changzhou Inst Technol Sch Photoelect Engn Changzhou 213032 Peoples R China
Infrastructure inspections generally cannot provide sufficient data for model training to automate its procedure of damage detection. Therefore, this study proposed a two-stepped automated concrete crack segmentation ... 详细信息
来源: 评论
unsupervised Adaptation with Interpretable Disentangled Representations for Distant Conversational Speech Recognition  19
Unsupervised Adaptation with Interpretable Disentangled Repr...
收藏 引用
19th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2018)
作者: Hsu, Wei-Ning Tang, Hao Glass, James MIT Comp Sci & Artificial Intelligence Lab 77 Massachusetts Ave Cambridge MA 02139 USA
The current trend in automatic speech recognition is to leverage large amounts of labeled data to train supervised neural network models. Unfortunately, obtaining data for a wide range of domains to train robust model... 详细信息
来源: 评论