咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 1 篇 unsupervised gra...
  • 1 篇 graph neural net...
  • 1 篇 graph filtering

机构

  • 1 篇 college of compu...
  • 1 篇 zhejiang key lab...

作者

  • 1 篇 ming gu
  • 1 篇 jiawei chen
  • 1 篇 haishuai wang
  • 1 篇 gaoming yang
  • 1 篇 sheng zhou
  • 1 篇 meihan liu
  • 1 篇 jiajun bu
  • 1 篇 zhuonan zheng

语言

  • 1 篇 英文
检索条件"主题词=Unsupervised Graph Anomaly Detection"
1 条 记 录,以下是1-10 订阅
排序:
Frequency Self-Adaptation graph Neural Network for unsupervised graph anomaly detection
收藏 引用
Neural networks : the official journal of the International Neural Network Society 2025年 190卷 107612页
作者: Ming Gu Gaoming Yang Zhuonan Zheng Meihan Liu Haishuai Wang Jiawei Chen Sheng Zhou Jiajun Bu College of Computer Science and Technology Zhejiang University Hangzhou 310027 China. Electronic address: guming444@***. Taobao and Tmall Group Hangzhou 310052 China. Electronic address: yanggaoming.ygm@***. College of Computer Science and Technology Zhejiang University Hangzhou 310027 China. Electronic address: zhengzn@***. College of Computer Science and Technology Zhejiang University Hangzhou 310027 China. Electronic address: lmh_zju@***. College of Computer Science and Technology Zhejiang University Hangzhou 310027 China Zhejiang Key Laboratory of Accessible Perception and Intelligent Systems Zhejiang University Hangzhou 310027 China. Electronic address: haishuai.wang@***. College of Computer Science and Technology Zhejiang University Hangzhou 310027 China. Electronic address: sleepyhunt@***. Zhejiang Key Laboratory of Accessible Perception and Intelligent Systems Zhejiang University Hangzhou 310027 China School of Software Technology Zhejiang University Ningbo 315048 China. Electronic address: zhousheng_zju@***. Zhejiang Key Laboratory of Accessible Perception and Intelligent Systems Zhejiang University Hangzhou 310027 China. Electronic address: bjj@***.
unsupervised graph anomaly detection (UGAD) seeks to identify abnormal patterns in graphs without relying on labeled data. Among existing UGAD methods, graph Neural Networks (GNNs) have played a critical role in learn... 详细信息
来源: 评论