咨询与建议

限定检索结果

文献类型

  • 41 篇 期刊文献
  • 20 篇 会议

馆藏范围

  • 61 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 44 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 9 篇 软件工程
    • 5 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 环境科学与工程(可...
    • 1 篇 光学工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 网络空间安全
  • 14 篇 理学
    • 8 篇 物理学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 10 篇 医学
    • 9 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 军事学
    • 1 篇 军队指挥学

主题

  • 61 篇 unsupervised ima...
  • 7 篇 image segmentati...
  • 4 篇 markov random fi...
  • 4 篇 parameter estima...
  • 3 篇 deep learning
  • 2 篇 unsupervised fuz...
  • 2 篇 superpixels
  • 2 篇 clustering
  • 2 篇 superpixel
  • 2 篇 watersheds
  • 2 篇 pairwise markov ...
  • 2 篇 neuro-fuzzy syst...
  • 2 篇 texture
  • 2 篇 sar
  • 2 篇 berkeley image d...
  • 2 篇 em algorithm
  • 2 篇 adaboost
  • 2 篇 iterative condit...
  • 2 篇 hashing
  • 2 篇 comparative reas...

机构

  • 2 篇 peking univ lmam...
  • 2 篇 peking univ sch ...
  • 2 篇 univ florida dep...
  • 2 篇 ebay inc san jos...
  • 1 篇 fdn bruno kessle...
  • 1 篇 tech univ carolo...
  • 1 篇 nanyang technol ...
  • 1 篇 univ queensland ...
  • 1 篇 univ posts & tel...
  • 1 篇 north carolina s...
  • 1 篇 nanyang technol ...
  • 1 篇 xinjiang univ ne...
  • 1 篇 bioengn res & de...
  • 1 篇 centre for image...
  • 1 篇 univ west indies...
  • 1 篇 univ montreal de...
  • 1 篇 getiint dept cit...
  • 1 篇 school of inform...
  • 1 篇 geprovas strasbo...
  • 1 篇 lebanese univ do...

作者

  • 3 篇 mikes stanislav
  • 3 篇 haindl michal
  • 2 篇 liang zhen
  • 2 篇 mignotte max
  • 2 篇 monfrini emmanue...
  • 2 篇 lee sang hak
  • 2 篇 koo hyung il
  • 2 篇 tao wenbing
  • 2 篇 putthividhya dua...
  • 2 篇 kampa kittipat (...
  • 2 篇 principe jose c.
  • 2 篇 liu liman
  • 2 篇 ma jinwen
  • 2 篇 cho nam ik
  • 2 篇 pieczynski wojci...
  • 2 篇 fang tiyu
  • 1 篇 geroski tijana
  • 1 篇 kovacevic jelena
  • 1 篇 tian shengwei
  • 1 篇 lv ke

语言

  • 59 篇 英文
  • 2 篇 其他
检索条件"主题词=Unsupervised Image Segmentation"
61 条 记 录,以下是11-20 订阅
排序:
unsupervised image segmentation with Gaussian Pairwise Markov Fields
收藏 引用
COMPUTATIONAL STATISTICS & DATA ANALYSIS 2021年 158卷 107178-107178页
作者: Gangloff, Hugo Courbot, Jean-Baptiste Monfrini, Emmanuel Collet, Christophe Univ Strasbourg CNRS ICube UMR 7357 300 Bd Sebastien Brant F-67400 Illkirch Graffenstaden France GEPROVAS Strasbourg France Univ Haute Alsace IRIMAS UR 7499 Mulhouse France Inst Polytech Paris Telecom SudParis SAMOVAR Palaiseau France
Modeling strongly correlated random variables is a critical task in the context of latent variable models. A new probabilistic model, called Gaussian Pairwise Markov Field, is presented to generalize existing Markov F... 详细信息
来源: 评论
Self-supervised Multi-view Clustering for unsupervised image segmentation  30th
Self-supervised Multi-view Clustering for Unsupervised Image...
收藏 引用
30th International Conference on Artificial Neural Networks (ICANN)
作者: Fang, Tiyu Liang, Zhen Shao, Xiuli Dong, Zihao Li, Jinping Univ Jinan Sch Informat Sci & Engn Jinan 250022 Peoples R China Nankai Univ Coll Comp Sci Tianjin 300350 Peoples R China
At present, the main idea of CNN-based unsupervised image segmentation is clustering a single image in the framework of CNNs. However, the single image clustering is very difficult to obtain enough supervision informa... 详细信息
来源: 评论
Semantic Guided Deep unsupervised image segmentation  20th
Semantic Guided Deep Unsupervised Image Segmentation
收藏 引用
20th International Conference on image Analysis and Processing (ICIAP)
作者: Saha, Sudipan Sudhakaran, Swathikiran Banerjee, Biplab Pendurkar, Sumedh Fdn Bruno Kessler Trento Italy Univ Trento Trento Italy Indian Inst Technol Mumbai Maharashtra India Coll Engn Pune Pune Maharashtra India
image segmentation is an important step in many image processing tasks. Inspired by the success of deep learning techniques in image processing tasks, a number of deep supervised image segmentation algorithms have bee... 详细信息
来源: 评论
An unsupervised image segmentation Workflow for Extraction of Left Coronary Artery from X-Ray Coronary Angiography  1
收藏 引用
2nd Serbian International Conference on Applied Artificial Intelligence (SICAAI)
作者: Dasic, Lazar Pavic, Ognjen Geroski, Tijana Filipovic, Nenad Univ Kragujevac Inst Informat Technol Jovana Cvijica Bb Kragujevac 34000 Serbia Bioengn Res & Dev Ctr BioIRC Prvoslava Stojanovica 6 Kragujevac 34000 Serbia Univ Kragujevac Fac Engn Sestre Janjic 6 Kragujevac 34000 Serbia
Coronary heart disease (CHD) is a serious cardiovascular illness that is among the top causes of death worldwide. Using X-ray coronary angiography, it is possible to detect and monitor CHD by visualizing coronary vess... 详细信息
来源: 评论
Adaptive Non-local Affinity Graph for unsupervised image segmentation
Adaptive Non-local Affinity Graph for Unsupervised Image Seg...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Lv, Xin Su, Zhenming Zhang, Taiyi Cheng, Wenxiang Qi, Xiaoqiong Lanzhou Univ Sch Informat Sci & Engn Lanzhou Peoples R China Univ Queensland Sch Informat Technol & Elect Engn Brisbane Qld Australia
In this paper, we present an adaptive superpixel-based graph construction method for unsupervised image segmentation. The empirical findings in this study provide a new understanding of applying non-local image patche... 详细信息
来源: 评论
unsupervised image segmentation based on multidimensional particle swarm optimization
Unsupervised image segmentation based on multidimensional pa...
收藏 引用
6th International Conference on Wireless, Mobile and Multi-Media (ICWMMN 2015)
作者: Lin Wang Wanxu Zhang Dong Wang Bo Jiang School of Information Science and Technology Northwest University Xi'an 710127 China School of Computer and Information Technology Beijing Jiaotong University 100044 China
An unsupervised image segmentation method based on multidimensional (MD) particle swarm optimization (PSO) is proposed in this paper. Firstly, a clustering-based nonlinear objective function of unsupervised image segm... 详细信息
来源: 评论
AN unsupervised image segmentation ALGORITHM BASED ON THE MACHINE LEARNING OF APPROPRIATE FEATURES
AN UNSUPERVISED IMAGE SEGMENTATION ALGORITHM BASED ON THE MA...
收藏 引用
16th IEEE International Conference on image Processing
作者: Lee, Sang Hak Koo, Hyung Il Cho, Nam Ik Seoul Natl Univ Dept Elect Engn & Comp Sci Seoul 151 South Korea
This paper proposes a new approach to the feature based unsupervised image segmentation. The difficulty with the conventional unsupervised segmentation lies in finding appropriate features that discriminate a meaningf... 详细信息
来源: 评论
Convergence of unsupervised image segmentation algorithms
Convergence of unsupervised image segmentation algorithms
收藏 引用
Conference on Neural, Morphological, and Stochastic Methods in image and Signal Processing
作者: WON, CS DONGGUK UNIV DEPT ELECTR ENGNSEOUL 100715SOUTH KOREA
This paper presents a comparative study of three deterministic unsupervised image segmentation algorithms. All of the three algorithms basically make use of a Markov random field (MRF) and try to obtain an approximate... 详细信息
来源: 评论
unsupervised image segmentation Using Comparative Reasoning and Random Walks
Unsupervised Image Segmentation Using Comparative Reasoning ...
收藏 引用
IEEE Global Conference on Signal and Information Processing
作者: Anuva Kulkarni Filipe Condessa Jelena Kovacevic Department of Electrical and Computer Engineering Carnegie Mellon University Department of Electrical and Computer Engineering
An image segmentation method that does not need training data can provide faster results than methods using complex optimization. Motivated by this idea, we present an unsupervised image segmentation method that combi... 详细信息
来源: 评论
Deep expectation-maximization network for unsupervised image segmentation and clustering
收藏 引用
image AND VISION COMPUTING 2023年 第1期135卷
作者: Pu, Yannan Sun, Jian Tang, Niansheng Xu, Zongben Key Lab Stat Modeling & Data Anal Yunnan Prov Kunming Peoples R China Xi An Jiao Tong Univ Xian Peoples R China
unsupervised learning, such as unsupervised image segmentation and clustering, are fundamental tasks in image representation learning. In this paper, we design a deep expectation-maximization (DEM) network for unsuper... 详细信息
来源: 评论