咨询与建议

限定检索结果

文献类型

  • 41 篇 期刊文献
  • 20 篇 会议

馆藏范围

  • 61 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 59 篇 工学
    • 44 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 9 篇 软件工程
    • 5 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 环境科学与工程(可...
    • 1 篇 光学工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 网络空间安全
  • 14 篇 理学
    • 8 篇 物理学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 1 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 10 篇 医学
    • 9 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 军事学
    • 1 篇 军队指挥学

主题

  • 61 篇 unsupervised ima...
  • 7 篇 image segmentati...
  • 4 篇 markov random fi...
  • 4 篇 parameter estima...
  • 3 篇 deep learning
  • 2 篇 unsupervised fuz...
  • 2 篇 superpixels
  • 2 篇 clustering
  • 2 篇 superpixel
  • 2 篇 watersheds
  • 2 篇 pairwise markov ...
  • 2 篇 neuro-fuzzy syst...
  • 2 篇 texture
  • 2 篇 sar
  • 2 篇 berkeley image d...
  • 2 篇 em algorithm
  • 2 篇 adaboost
  • 2 篇 iterative condit...
  • 2 篇 hashing
  • 2 篇 comparative reas...

机构

  • 2 篇 peking univ lmam...
  • 2 篇 peking univ sch ...
  • 2 篇 univ florida dep...
  • 2 篇 ebay inc san jos...
  • 1 篇 fdn bruno kessle...
  • 1 篇 tech univ carolo...
  • 1 篇 nanyang technol ...
  • 1 篇 univ queensland ...
  • 1 篇 univ posts & tel...
  • 1 篇 north carolina s...
  • 1 篇 nanyang technol ...
  • 1 篇 xinjiang univ ne...
  • 1 篇 bioengn res & de...
  • 1 篇 centre for image...
  • 1 篇 univ west indies...
  • 1 篇 univ montreal de...
  • 1 篇 getiint dept cit...
  • 1 篇 school of inform...
  • 1 篇 geprovas strasbo...
  • 1 篇 lebanese univ do...

作者

  • 3 篇 mikes stanislav
  • 3 篇 haindl michal
  • 2 篇 liang zhen
  • 2 篇 mignotte max
  • 2 篇 monfrini emmanue...
  • 2 篇 lee sang hak
  • 2 篇 koo hyung il
  • 2 篇 tao wenbing
  • 2 篇 putthividhya dua...
  • 2 篇 kampa kittipat (...
  • 2 篇 principe jose c.
  • 2 篇 liu liman
  • 2 篇 ma jinwen
  • 2 篇 cho nam ik
  • 2 篇 pieczynski wojci...
  • 2 篇 fang tiyu
  • 1 篇 geroski tijana
  • 1 篇 kovacevic jelena
  • 1 篇 tian shengwei
  • 1 篇 lv ke

语言

  • 59 篇 英文
  • 2 篇 其他
检索条件"主题词=Unsupervised Image Segmentation"
61 条 记 录,以下是51-60 订阅
排序:
Adaptive scene dependent filters for segmentation and online learning of visual objects
收藏 引用
NEUROCOMPUTING 2007年 第7-9期70卷 1235-1246页
作者: Steil, J. J. Goetting, M. Wersing, H. Koerner, E. Ritter, H. Univ Bielefeld Fac Technol Neuroinformat Grp D-33501 Bielefeld Germany Honda Res Inst GmbH D-63073 Offenbach Germany
We propose the adaptive scene dependent filter (ASDF) hierarchy for unsupervised learning of image segmentation, which integrates several processing pathways into a flexible, highly dynamic, and real-time capable visi... 详细信息
来源: 评论
Sparse depth densification for monocular depth estimation
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2024年 第5期83卷 14821-14838页
作者: Liang, Zhen Fang, Tiyu Hu, Yanzhu Wang, Yingjian Beijing Univ Posts & Telecommun Beijing Key Lab Work Safety Intelligent Monitoring Beijing 100876 Peoples R China Beijing Univ Posts & Telecommun Sch Modern Post Sch Automat Beijing 100876 Peoples R China Shandong Univ Sch Control Sci & Engn Jinan 250100 Peoples R China
Now the dense depth prediction by single image and a few sparse depth measurements has attracted more and more attention because it provides a low-cost and efficient solution for estimating high-quality depth informat... 详细信息
来源: 评论
unsupervised Surface Reflectance Field Multi-segmenter  16th
Unsupervised Surface Reflectance Field Multi-segmenter
收藏 引用
16th International Conference on Computer Analysis of images and Patterns (CAIP)
作者: Haindl, Michal Mikes, Stanislav Kudo, Mineichi Czech Acad Sci Inst Informat Theory & Automat Prague Czech Republic Hokkaido Univ Grad Sch Engn Sapporo Hokkaido Japan
An unsupervised, illumination invariant, multi-spectral, multi-resolution, multiple-segmenter for textured images with unknown number of classes is presented. The segmenter is based on a weighted combination of severa... 详细信息
来源: 评论
ILLUMINATION INVARIANT unsupervised SEGMENTER
ILLUMINATION INVARIANT UNSUPERVISED SEGMENTER
收藏 引用
16th IEEE International Conference on image Processing
作者: Haindl, Michal Mikes, Stanislav Vacha, Pavel ASCR Inst Informat Theory & Automat Prague 18208 Czech Republic
A novel illumination invariant unsupervised multispectral texture segmentation method with unknown number of classes is presented. Multispectral texture mosaics are locally represented by illumination invariants deriv... 详细信息
来源: 评论
An In-situ Real-time Hidden Damage Inspection on C-17 Globemaster III Composite Aileron using LSP Technique under Thermal Excitation
An In-situ Real-time Hidden Damage Inspection on C-17 Globem...
收藏 引用
Conference on Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems
作者: Fong, Rey-Yie Yuan, Fuh-Gwo North Carolina State Univ Dept Mech & Aerosp Engn Smart Struct & Mat Lab Raleigh NC 27695 USA NIA Integrated Struct Hlth Management Lab Hampton VA 23666 USA
A non-contact, full-field vision-based non-destructive inspection (V-NDI) system was developed with multiple damages detection capabilities in composite structures under thermal excitation. In contrast to point-based ... 详细信息
来源: 评论
unsupervised Camouflaged Object segmentation as Domain Adaptation
Unsupervised Camouflaged Object Segmentation as Domain Adapt...
收藏 引用
IEEE/CVF International Conference on Computer Vision (ICCV)
作者: Zhang, Yi Wu, Chengyi Ecole Technol Super LIVIA Montreal PQ Canada Henan Polytech Univ Jiaozuo Henan Peoples R China
Deep learning for unsupervised image segmentation remains challenging due to the absence of human labels. The common idea is to train a segmentation head, with the supervision of pixel-wise pseudo-labels generated bas... 详细信息
来源: 评论
unsupervised fuzzy clustering using Weighted Incremental Neural Networks.
收藏 引用
International journal of neural systems 2004年 第6期14卷 355-371页
作者: Muhammed, Hamed Hamid Centre for Image Analysis Uppsala University Lagerhyddsvagen 3 Uppsala SE-75237 Sweden
A new more efficient variant of a recently developed algorithm for unsupervised fuzzy clustering is introduced. A Weighted Incremental Neural Network (WINN) is introduced and used for this purpose. The new approach is... 详细信息
来源: 评论
A Comparative Study on Lagrange Ying-Yang Alternation Method in Gaussian Mixture-Based Clustering  18th
A Comparative Study on Lagrange Ying-Yang Alternation Method...
收藏 引用
18th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL)
作者: Long, Weijian Tu, Shikui Xu, Lei Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai Peoples R China Shanghai Jiao Tong Univ Ctr Cognit Machines & Computat Hlth Shanghai Peoples R China Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Hong Kong Peoples R China
Gaussian Mixture Model (GMM) has been applied to clustering with wide applications in image segmentation, object detection and so on. Many algorithms were proposed to learn GMM with appropriate number of Gaussian comp... 详细信息
来源: 评论
Texture-based segmentation of high resolution SAR images using contourlet transform and mean shift
Texture-based segmentation of high resolution SAR images usi...
收藏 引用
IEEE International Conference on Information Acquisition
作者: Li Yingqi He Mingyi Northwestern Polytech Univ Coll Elect Engn 127 W Youyi Rd Xian 710072 Shaanxi Peoples R China
This paper presents an unsupervised texture-based segmentation algorithm which uses reduced contourlet transform sub-bands and mean shift clustering, to analysis the texture information of high resolution SAR images. ... 详细信息
来源: 评论
Increasing the Accuracy and Automation of Fractional Vegetation Cover Estimation from Digital Photographs
收藏 引用
REMOTE SENSING 2016年 第7期8卷 474-474页
作者: Coy, Andre Rankine, Dale Taylor, Michael Nielsen, David C. Cohen, Jane Univ West Indies Dept Phys Mona Jamaica USDA ARS Cent Great Plains Res Stn Akron CO 80720 USA Univ West Indies Dept Life Sci Mona Jamaica
The use of automated methods to estimate fractional vegetation cover (FVC) from digital photographs has increased in recent years given its potential to produce accurate, fast and inexpensive FVC measurements. Wide ac... 详细信息
来源: 评论