咨询与建议

限定检索结果

文献类型

  • 68 篇 期刊文献
  • 45 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 114 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 109 篇 工学
    • 87 篇 计算机科学与技术...
    • 47 篇 电气工程
    • 12 篇 软件工程
    • 10 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 6 篇 测绘科学与技术
    • 6 篇 生物医学工程(可授...
    • 4 篇 电子科学与技术(可...
    • 3 篇 仪器科学与技术
    • 2 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 30 篇 医学
    • 23 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 5 篇 特种医学
  • 20 篇 理学
    • 9 篇 物理学
    • 5 篇 地球物理学
    • 4 篇 化学
    • 4 篇 生物学
    • 1 篇 数学
    • 1 篇 地理学
  • 7 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 公共管理
    • 1 篇 图书情报与档案管...
  • 2 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 农学

主题

  • 114 篇 unsupervised rep...
  • 12 篇 contrastive lear...
  • 10 篇 self-supervised ...
  • 9 篇 deep learning
  • 7 篇 training
  • 6 篇 task analysis
  • 5 篇 neural networks
  • 5 篇 feature extracti...
  • 5 篇 deep clustering
  • 4 篇 representation l...
  • 4 篇 generative adver...
  • 3 篇 clustering
  • 3 篇 anomaly detectio...
  • 3 篇 knowledge distil...
  • 3 篇 generative adver...
  • 3 篇 convolutional ne...
  • 3 篇 unsupervised lea...
  • 2 篇 covid-19
  • 2 篇 markov chains
  • 2 篇 multivariate tim...

机构

  • 3 篇 tianjin univ col...
  • 2 篇 nanyang technol ...
  • 2 篇 univ sci & techn...
  • 2 篇 northwestern pol...
  • 2 篇 ocean univ china...
  • 2 篇 tsinghua univ pe...
  • 2 篇 xiamen univ peop...
  • 2 篇 facebook ai res ...
  • 2 篇 ens psl univ inr...
  • 2 篇 lanzhou univ sch...
  • 1 篇 univ zaragoza ar...
  • 1 篇 vanderbilt univ ...
  • 1 篇 capital normal u...
  • 1 篇 cochin univ sci ...
  • 1 篇 fudan univ shang...
  • 1 篇 vub dept elect &...
  • 1 篇 kyoto univ grad ...
  • 1 篇 shanghai ai lab ...
  • 1 篇 peking univ peop...
  • 1 篇 wuhan polytech u...

作者

  • 3 篇 nie feiping
  • 3 篇 li xuelong
  • 2 篇 yadav pooja
  • 2 篇 wei dong
  • 2 篇 xing zhenchang
  • 2 篇 li xiaohong
  • 2 篇 zheng yefeng
  • 2 篇 ma shiwei
  • 2 篇 dupoux emmanuel
  • 2 篇 zhang yan
  • 2 篇 menon neeraj
  • 2 篇 ye chengyang
  • 2 篇 riviere morgane
  • 2 篇 ma yixuan
  • 2 篇 feng zhiyong
  • 2 篇 wu zhijie
  • 2 篇 dong junyu
  • 2 篇 liu fang
  • 2 篇 yamamoto kohei
  • 2 篇 matsui yutaka

语言

  • 114 篇 英文
检索条件"主题词=Unsupervised Representation Learning"
114 条 记 录,以下是1-10 订阅
排序:
unsupervised representation learning for Large-Scale Wafer Maps in Micro-Electronic Manufacturing
收藏 引用
IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2024年 第1期70卷 1226-1235页
作者: Xu, Qiao Yu, Naigong Yu, Hejie Beijing Univ ofTechnol Fac Informat Technol Beijing 100124 Peoples R China Beijing Univ Technol Beijing Key Lab Comp Intelligence & Intelligent Sy Beijing Municipal Commiss Sci & Technol Beijing 100124 Peoples R China
Recognition of wafer map defect patterns is essential for evaluating the reliability of micro-electronic manufacturing. Due to the difficulty of labeling, the available large-scale wafer maps are raw data without labe... 详细信息
来源: 评论
unsupervised representation learning-based Doppler Ultrasound Signal Quality Assessment
Unsupervised Representation Learning-based Doppler Ultrasoun...
收藏 引用
IEEE Global Communications Conference (GLOBECOM)
作者: Shi, Xintong Yamamoto, Kohei Ohtsuki, Tomoaki Matsui, Yutaka Owada, Kazunari Keio Univ Dept Informat & Comp Sci Yokohama Kanagawa 2238522 Japan Atom Med Co Ltd Tech Dept Res & Dev Grp Tokyo 1130021 Japan
The Doppler ultrasound (DUS) transducer has been widely used for fetal heart rate (FHR) monitoring. However, the fetal DUS signals from the transducers can be corrupted by several interference sources such as maternal... 详细信息
来源: 评论
Semantic Relationship-Based unsupervised representation learning of Multivariate Time Series
收藏 引用
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2024年 第2期E107卷 191-200页
作者: Ye, Chengyang Ma, Qiang Kyoto Univ Grad Sch Informat Kyoto 6068303 Japan
representation learning is a crucial and complex task for multivariate time series data analysis, with a wide range of applications including trend analysis, time series data search, and forecasting. In practice, unsu... 详细信息
来源: 评论
View sequence prediction GAN: unsupervised representation learning for 3D shapes by decomposing view content and viewpoint variance
收藏 引用
MULTIMEDIA SYSTEMS 2024年 第4期30卷 231-231页
作者: Zhou, Heyu Li, Jiayu Liu, Xianzhu Lyu, Yingda Chen, Haipeng Liu, An-An Yichang Testing Tech R&D Inst Yichang 443003 Peoples R China Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Changchun Univ Sci & Technol Natl & Local Joint Engn Res Ctr Space Optoelect Te Changchun 130022 Peoples R China Changchun Univ Sci & Technol Coll Optoelect Engn Changchun 130022 Peoples R China Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Ed Changchun 130012 Peoples R China
unsupervised representation learning for 3D shapes has become a critical problem for large-scale 3D shape management. Recent model-based methods for this task require additional information for training, while popular... 详细信息
来源: 评论
Self-Supervised Self-Organizing Clustering Network: A Novel unsupervised representation learning Method
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND learning SYSTEMS 2024年 第2期35卷 1857-1871页
作者: Li, Shuo Liu, Fang Jiao, Licheng Chen, Puhua Li, Lingling Xidian Univ Joint Int Res Lab Intelligent Percept & Computat Key Lab Intelligent Percept & Image Understanding Int Res Ctr Intelligent Percept & ComputatMinist Xian 710071 Shaanxi Peoples R China
Deep learning-based clustering methods usually regard feature extraction and feature clustering as two independent steps. In this way, the features of all images need to be extracted before feature clustering, which c... 详细信息
来源: 评论
Lung-GANs: unsupervised representation learning for Lung Disease Classification Using Chest CT and X-Ray Images
收藏 引用
IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT 2023年 第8期70卷 2774-2786页
作者: Yadav, Pooja Menon, Neeraj Ravi, Vinayakumar Vishvanathan, Sowmya VMware Bangalore 560076 Karnataka India Prince Mohammad Bin Fand Univ Ctr Artificial Intelligence Khobar 34754 Saudi Arabia Amrita Vishwa Vidyapeetham Amrita Sch Engn Ctr Computat Engn & Networking CEN Coimbatore 641112 Tamil Nadu India
Lung diseases are a tremendous challenge to the health and life of people globally, accounting for 5 out of 30 most common causes of death. Early diagnosis is crucial to help in faster recovery and improve long-term s... 详细信息
来源: 评论
LBP4MTS: Local Binary Pattern-Based unsupervised representation learning of Multivariate Time Series
收藏 引用
IEEE ACCESS 2023年 11卷 118595-118605页
作者: Ye, Chengyang Ma, Qiang Kyoto Univ Grad Sch Informat Yoshida Tachibana ChoSakyo Ku Kyoto 6068303 Japan Kyoto Inst Technol Dept Informat Sci Matsugasaki Hashigami ChoSakyo Ku Kyoto 6068585 Japan
representation learning of multivariate time series is a crucial and complex task that offers valuable insights for numerous applications, including time series classification, trend analysis, and regression. Unsuperv... 详细信息
来源: 评论
unsupervised representation learning for Speech Activity Detection in the Fearless Steps Challenge 2021  22
Unsupervised Representation Learning for Speech Activity Det...
收藏 引用
Interspeech Conference
作者: Gimeno, Pablo Ortega, Alfonso Miguel, Antonio Lleida, Eduardo Univ Zaragoza Aragon Inst Engn Res I3A ViVoLab Zaragoza Spain
In this paper, we describe the ViVoLab speech activity detection (SAD) system submitted to the Fearless steps Challenge phase III. This series of challenges have proposed a number of speech processing task dealing wit... 详细信息
来源: 评论
unsupervised representation learning Meets Pseudo-Label Supervised Self-Distillation: A New Approach to Rare Disease Classification  24th
Unsupervised Representation Learning Meets Pseudo-Label Supe...
收藏 引用
International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
作者: Sun, Jinghan Wei, Dong Ma, Kai Wang, Liansheng Zheng, Yefeng Xiamen Univ Xiamen Peoples R China Tencent Jarvis Lab Shenzhen Peoples R China
Rare diseases are characterized by low prevalence and are often chronically debilitating or life-threatening. Imaging-based classification of rare diseases is challenging due to the severe shortage in training example... 详细信息
来源: 评论
Deep boundary-aware clustering by jointly optimizing unsupervised representation learning
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第24期81卷 34309-34324页
作者: Wang, Ru Li, Lin Wang, Peipei Tao, Xiaohui Liu, Peiyu Shandong Normal Univ Sch Informat Sci & Engn Jinan Peoples R China Wuhan Univ Technol Sch Comp Sci & Technol Wuhan Peoples R China Univ Southern Queensland Sch Sci Toowoomba Qld Australia
Deep clustering obtains feature representation generally and then performs clustering for high dimension real-world data. However, conventional solutions are two-stage embedding learning-based methods and these two pr... 详细信息
来源: 评论