咨询与建议

限定检索结果

文献类型

  • 42 篇 期刊文献
  • 20 篇 会议

馆藏范围

  • 62 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 60 篇 工学
    • 45 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 9 篇 软件工程
    • 5 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 4 篇 测绘科学与技术
    • 3 篇 电子科学与技术(可...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 网络空间安全
    • 1 篇 光学工程
    • 1 篇 生物医学工程(可授...
  • 15 篇 理学
    • 8 篇 物理学
    • 2 篇 数学
    • 2 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 10 篇 医学
    • 9 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 军事学
    • 1 篇 军队指挥学

主题

  • 62 篇 unsupervised ima...
  • 7 篇 image segmentati...
  • 4 篇 markov random fi...
  • 4 篇 parameter estima...
  • 3 篇 unsupervised fuz...
  • 3 篇 deep learning
  • 3 篇 watersheds
  • 3 篇 neuro-fuzzy syst...
  • 2 篇 superpixels
  • 2 篇 clustering
  • 2 篇 superpixel
  • 2 篇 pairwise markov ...
  • 2 篇 texture
  • 2 篇 sar
  • 2 篇 berkeley image d...
  • 2 篇 em algorithm
  • 2 篇 adaboost
  • 2 篇 iterative condit...
  • 2 篇 hashing
  • 2 篇 comparative reas...

机构

  • 2 篇 peking univ lmam...
  • 2 篇 peking univ sch ...
  • 2 篇 univ florida dep...
  • 2 篇 ebay inc san jos...
  • 1 篇 fdn bruno kessle...
  • 1 篇 tech univ carolo...
  • 1 篇 centre for image...
  • 1 篇 nanyang technol ...
  • 1 篇 univ queensland ...
  • 1 篇 univ posts & tel...
  • 1 篇 north carolina s...
  • 1 篇 nanyang technol ...
  • 1 篇 xinjiang univ ne...
  • 1 篇 bioengn res & de...
  • 1 篇 centre for image...
  • 1 篇 univ west indies...
  • 1 篇 univ montreal de...
  • 1 篇 getiint dept cit...
  • 1 篇 school of inform...
  • 1 篇 geprovas strasbo...

作者

  • 3 篇 mikes stanislav
  • 3 篇 haindl michal
  • 2 篇 liang zhen
  • 2 篇 mignotte max
  • 2 篇 monfrini emmanue...
  • 2 篇 lee sang hak
  • 2 篇 koo hyung il
  • 2 篇 tao wenbing
  • 2 篇 putthividhya dua...
  • 2 篇 kampa kittipat (...
  • 2 篇 principe jose c.
  • 2 篇 liu liman
  • 2 篇 ma jinwen
  • 2 篇 cho nam ik
  • 2 篇 pieczynski wojci...
  • 2 篇 fang tiyu
  • 1 篇 geroski tijana
  • 1 篇 kovacevic jelena
  • 1 篇 tian shengwei
  • 1 篇 lv ke

语言

  • 60 篇 英文
  • 2 篇 其他
检索条件"主题词=Unsupervised image segmentation"
62 条 记 录,以下是1-10 订阅
排序:
unsupervised image segmentation with robust virtual class contrast
收藏 引用
PATTERN RECOGNITION LETTERS 2023年 第1期173卷 10-16页
作者: Nguyen, Khang Do, Kien Vu, Truong Than, Khoat Hanoi Univ Sci & Technol Hanoi Vietnam Deakin Univ Appl Artificial Intelligence Inst A2I2 Burwood Australia
unsupervised image segmentation (UIS) is a challenging problem in computer vision that aims to classify pixels in an image into different semantic classes without using any labels. Among the various UIS methods, Mask ... 详细信息
来源: 评论
unsupervised image segmentation using triplet Markov fields
收藏 引用
COMPUTER VISION AND image UNDERSTANDING 2005年 第3期99卷 476-498页
作者: Benboudjema, D Pieczynski, W GETIINT Dept CITI F-91000 Evry France
Hidden Markov fields (HMF) models are widely applied it) Narious problems arising in image processing. In these models, the hidden process of interest X is a Markov field and must be estimated from its observable nois... 详细信息
来源: 评论
unsupervised image segmentation Using Comparative Reasoning and Random Walks
Unsupervised Image Segmentation Using Comparative Reasoning ...
收藏 引用
3rd IEEE Global Conference on Signal and Information Processing (GlobalSIP)
作者: Kulkarni, Anuva Condessa, Filipe Kovacevic, Jelena Carnegie Mellon Univ Dept Elect & Comp Engn Pittsburgh PA 15213 USA Univ Lisbon Inst Telecomunicacoes Lisbon Portugal Univ Lisbon Inst Super Tecn Lisbon Portugal Carnegie Mellon Univ Dept Biomed Engn Pittsburgh PA 15213 USA
An image segmentation method that does not need training data can provide faster results than methods using complex optimization. Motivated by this idea, we present an unsupervised image segmentation method that combi... 详细信息
来源: 评论
Artificial immune kernel clustering network for unsupervised image segmentation
收藏 引用
Progress in Natural Science:Materials International 2008年 第4期18卷 455-461页
作者: Wenlong Huang , Licheng Jiao Institute of Intelligent Information Processing, Xidian University, Xi’an 710071, China Institute of Intelligent Information Processing Xidian University Xi’an 710071 China
An immune kernel clustering network (IKCN) is proposed based on the combination of the artificial immune network and the sup- port vector domain description (SVDD) for the unsupervised image segmentation. In the netwo... 详细信息
来源: 评论
Q-Seg: Quantum Annealing-Based unsupervised image segmentation
收藏 引用
IEEE COMPUTER GRAPHICS AND APPLICATIONS 2024年 第5期44卷 27-39页
作者: Venkatesh, Supreeth Mysore Macaluso, Antonio Nuske, Marlon Klusch, Matthias Dengel, Andreas German Res Ctr Artificial Intelligence D-66123 Saarbrucken Germany
We present Q-Seg, a novel unsupervised image segmentation method based on quantum annealing, tailored for existing quantum hardware. We formulate the pixelwise segmentation problem, which assimilates spectral and spat... 详细信息
来源: 评论
Consistent Estimation of the Max-Flow Problem: Towards unsupervised image segmentation
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022年 第5期44卷 2346-2357页
作者: Iquebal, Ashif Sikandar Bukkapatnam, Satish Texas A&M Univ Dept Ind & Syst Engn College Stn TX 77843 USA
Advances in the image-based diagnostics of complex biological and manufacturing processes have brought unsupervised image segmentation to the forefront of enabling automated, on the fly decision making. However, most ... 详细信息
来源: 评论
Information fusion for unsupervised image segmentation using stochastic watershed and Hessian matrix
收藏 引用
IET image PROCESSING 2018年 第4期12卷 525-531页
作者: Chahine, Chaza Vachier-Lagorre, Corinne Chenoune, Yasmina El Berbari, Racha El Fawal, Ziad Petit, Eric Univ Paris Est LISSI Creteil France Lebanese Univ Doctoral Sch Sci & Technol Beirut Lebanon ESME Sudria Lab Ingn Syst Traitement Informat Ivry France
This study deals with information fusion for image segmentation. The evidence theory (or the Dempster-Shafer theory) allows the modellisation of uncertainty and imprecision in the information as well as the combinatio... 详细信息
来源: 评论
Bayesian learning, global competition and unsupervised image segmentation
收藏 引用
PATTERN RECOGNITION LETTERS 2000年 第2期21卷 107-116页
作者: Guo, GD Ma, SD Nanyang Technol Univ Sch Elect & Elect Engn Intelligent Machine Res Lab Singapore 639798 Singapore CAS NLPR Inst Automat Beijing 100080 Peoples R China
A novel approach to unsupervised stochastic model-based image segmentation is presented and the problems of parameter estimation and image segmentation are formulated as Bayesian learning. In order to draw samples cor... 详细信息
来源: 评论
A Nonsymmetric Mixture Model for unsupervised image segmentation
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2013年 第2期43卷 751-765页
作者: Thanh Minh Nguyen Wu, Q. M. Jonathan Univ Windsor Dept Elect & Comp Engn Windsor ON N9B 3P4 Canada
Finite mixture models with symmetric distribution have been widely used for many computer vision and pattern recognition problems. However, in many applications, the distribution of the data has a non-Gaussian and non... 详细信息
来源: 评论
Pixel-level clustering network for unsupervised image segmentation
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 第PartB期127卷
作者: Hoang, Cuong Manh Kang, Byeongkeun Seoul Natl Univ Sci & Technol Dept Elect Engn 232 Gongneung Ro Seoul 01811 South Korea
While image segmentation is crucial in various computer vision applications, such as autonomous driving, grasping, and robot navigation, annotating all objects at the pixel-level for training is nearly impossible. The... 详细信息
来源: 评论