咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 工学
    • 4 篇 电气工程
    • 4 篇 计算机科学与技术...
    • 3 篇 测绘科学与技术
    • 2 篇 电子科学与技术(可...
    • 1 篇 软件工程
  • 4 篇 医学
    • 4 篇 临床医学
  • 3 篇 理学
    • 2 篇 地理学
    • 1 篇 地球物理学

主题

  • 8 篇 unsupervised obj...
  • 2 篇 feature extracti...
  • 1 篇 hyperspectral im...
  • 1 篇 vision system
  • 1 篇 siamese neural n...
  • 1 篇 synthetic apertu...
  • 1 篇 object detection
  • 1 篇 optical imaging
  • 1 篇 radar polarimetr...
  • 1 篇 feature ensemble
  • 1 篇 synthetic apertu...
  • 1 篇 optimum patch
  • 1 篇 sparse matrices
  • 1 篇 marine vehicles
  • 1 篇 transfer learnin...
  • 1 篇 image segmentati...
  • 1 篇 anomaly detectio...
  • 1 篇 object-based ana...
  • 1 篇 model quantizati...
  • 1 篇 real-time vision

机构

  • 1 篇 zhejiang univ te...
  • 1 篇 minist educ key ...
  • 1 篇 xidian univ dept...
  • 1 篇 north minzu univ...
  • 1 篇 bilkent univ dep...
  • 1 篇 xidian univ acad...
  • 1 篇 stockholm univ d...
  • 1 篇 soochow univ sch...
  • 1 篇 chinese acad sci...
  • 1 篇 shomal univ elec...
  • 1 篇 wuhan univ sch c...
  • 1 篇 chinese acad sci...
  • 1 篇 univ murcia dept...
  • 1 篇 univ paris xiii ...
  • 1 篇 chinese acad sci...
  • 1 篇 univ malaga dept...
  • 1 篇 univ alberta ele...
  • 1 篇 zhejiang univ te...

作者

  • 1 篇 kang jian
  • 1 篇 kamangar m. hash...
  • 1 篇 wang shuo
  • 1 篇 xie xinyi
  • 1 篇 liang ronghua
  • 1 篇 zhao xing
  • 1 篇 feng wei
  • 1 篇 zhong xian
  • 1 篇 dong liang
  • 1 篇 castro francisco...
  • 1 篇 akbarpour mohamm...
  • 1 篇 lu zelin
  • 1 篇 cui xiaohui
  • 1 篇 fu zhongwang
  • 1 篇 wang zhirui
  • 1 篇 chen xi
  • 1 篇 guil nicolas
  • 1 篇 wunsche robert
  • 1 篇 quan yinghui
  • 1 篇 mandal mrinal

语言

  • 8 篇 英文
检索条件"主题词=Unsupervised object detection"
8 条 记 录,以下是1-10 订阅
排序:
Real-time unsupervised video object detection on the edge
收藏 引用
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE 2025年 167卷
作者: Ruiz-Barroso, Paula Castro, Francisco M. Guil, Nicolas Univ Malaga Dept Comp Architecture Malaga Spain
object detection in video is an essential computer vision task. Consequently, many efforts have been devoted to developing precise and fast deep-learning models for this task. These models are commonly deployed on dis... 详细信息
来源: 评论
Semantic-aware representations for unsupervised Camouflaged object detection
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 2025年 107卷
作者: Lu, Zelin Zhao, Xing Xie, Liang Liang, Haoran Liang, Ronghua Zhejiang Univ Technol Coll Comp Sci & Technol 288 Liuhe Rd Hangzhou 310023 Peoples R China
unsupervised image segmentation algorithms face challenges due to the lack of human annotations. They typically employ representations derived from self-supervised models to generate pseudo-labels for supervising mode... 详细信息
来源: 评论
Novel patch selection based on object detection in HMAX for natural image classification
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2022年 第4期16卷 1101-1108页
作者: Akbarpour, Mohammadesmaeil Mandal, Mrinal Kamangar, M. Hashemi Shomal Univ Elect Engn Amol Iran Univ Alberta Elect & Comp Engn Edmonton AB Canada
The human visual system (HVS) can effectively recognize objects in complex natural scenes with high speed and accuracy. Many models have been proposed based on HVS among which HMAX is one of the superior models. In HM... 详细信息
来源: 评论
CroMoDa: unsupervised Oriented SAR Ship detection via Cross-Modality Distribution Alignment
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2024年 17卷 11899-11914页
作者: Chen, Xi Wang, Zhirui Wang, Wenhao Xie, Xinyi Kang, Jian Fernandez-Beltran, Ruben Soochow Univ Sch Elect & Informat Engn Suzhou 215006 Peoples R China Chinese Acad Sci Aerosp Informat Res Inst Beijing 100190 Peoples R China Chinese Acad Sci Inst Elect Key Lab Network Informat Syst Technol Beijing 100190 Peoples R China Zhejiang Univ Technol Coll Informat Engn Hangzhou 310023 Peoples R China Univ Murcia Dept Comp Sci & Syst Murcia 30100 Spain
Most state-of-the-art synthetic aperture radar (SAR) ship detection methods based on deep learning require large amounts of labeled data for network training. However, the annotation process requires significant manpo... 详细信息
来源: 评论
Automatic detection of geospatial objects using multiple hierarchical segmentations
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2008年 第7期46卷 2097-2111页
作者: Akcay, H. Goekhan Aksoy, Selim Bilkent Univ Dept Comp Engn TR-06800 Ankara Turkey
The object-based analysis of remotely sensed imagery provides valuable spatial and structural information that is complementary to pixel-based spectral information in classification. In this paper, we present novel me... 详细信息
来源: 评论
Subfeature Ensemble-Based Hyperspectral Anomaly detection Algorithm
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2022年 15卷 5943-5952页
作者: Wang, Shuo Feng, Wei Quan, Yinghui Bao, Wenxing Dauphin, Gabriel Gao, Lianru Zhong, Xian Xing, Mengdao Xidian Univ Dept Remote Sensing Sci & Technol Sch Elect Engn Xian 710071 Peoples R China North Minzu Univ Sch Comp Sci & Engn Yinchuan 750021 Ningxia Peoples R China Univ Paris XIII Lab Informat Proc & Transmiss L2TI Inst Galilee F-93430 Villetaneuse France Chinese Acad Sci Key Lab Digital Earth Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China Xidian Univ Acad Adv Interdisciplinary Res Xian 710071 Peoples R China
Hyperspectral images (HSIs) have always played an important role in remote sensing applications. Anomaly detection has become a hot spot in HSI processing in recent years. The popular detecting method is to accurately... 详细信息
来源: 评论
An Adaptive Vision Architecture for AGI Systems  16th
An Adaptive Vision Architecture for AGI Systems
收藏 引用
16th International Conference on Artificial General Intelligence (AGI)
作者: Wunsche, Robert Stockholm Univ Dept Psychol Stockholm Sweden
This paper presents an unsupervised object detection system which can offline-learn generic visual features via Siamese neural network, yet is able to learn new object classes at run-time with a prototype learning app... 详细信息
来源: 评论
OCIE: Augmenting model interpretability via Deconfounded Explanation-Guided Learning
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2024年 302卷
作者: Dong, Liang Chen, Leiyang Zheng, Chengliang Fu, Zhongwang Zukaib, Umer Cui, Xiaohui Shen, Zhidong Wuhan Univ Sch Cyber Sci & Engn Wuhan 430000 Peoples R China Minist Educ Key Lab Aerosp Informat Secur & Trusted Comp Wuhan 430000 Peoples R China
Deep neural networks (DNNs) often encounter significant challenges related to opacity, inherent biases, and shortcut learning, which undermine their practical reliability. In this study, we address these issues by con... 详细信息
来源: 评论