咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 数学
  • 2 篇 工学
    • 2 篇 计算机科学与技术...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 3 篇 variational em a...
  • 2 篇 mm algorithms
  • 2 篇 stochastic block...
  • 2 篇 em algorithms
  • 2 篇 generalized em a...
  • 1 篇 social networks
  • 1 篇 compound markov ...
  • 1 篇 bayesian margina...
  • 1 篇 biclustering
  • 1 篇 image superresol...
  • 1 篇 finite mixture m...
  • 1 篇 edge preservatio...
  • 1 篇 image registrati...

机构

  • 2 篇 univ melbourne d...
  • 1 篇 kyoto univ grad ...
  • 1 篇 rice univ dept s...
  • 1 篇 penn state univ ...
  • 1 篇 nara inst sci & ...

作者

  • 1 篇 maeda shin-ichi
  • 1 篇 vu duy q.
  • 1 篇 hunter david r.
  • 1 篇 schweinberger mi...
  • 1 篇 duy vu
  • 1 篇 kanemura atsunor...
  • 1 篇 aitkin murray
  • 1 篇 ishii shin

语言

  • 3 篇 英文
检索条件"主题词=Variational EM algorithms"
3 条 记 录,以下是1-10 订阅
排序:
Superresolution with compound Markov random fields via the variational em algorithm
收藏 引用
NEURAL NETWORKS 2009年 第7期22卷 1025-1034页
作者: Kanemura, Atsunori Maeda, Shin-ichi Ishii, Shin Kyoto Univ Grad Sch Informat Kyoto 6110011 Japan Nara Inst Sci & Technol Grad Sch Informat Sci Nara 6300192 Japan
This study deals with a reconstruction-type superresolution problem and the accompanying image registration problem simultaneously. We propose a Bayesian approach in which the prior is modeled as a compound Gaussian M... 详细信息
来源: 评论
variational algorithms for biclustering models
收藏 引用
COMPUTATIONAL STATISTICS & DATA ANALYSIS 2015年 89卷 12-24页
作者: Duy Vu Aitkin, Murray Univ Melbourne Dept Math & Stat Melbourne Vic 3010 Australia
Biclustering is an important tool in exploratory statistical analysis which can be used to detect latent row and column groups of different response patterns. However, few studies include covariate data directly into ... 详细信息
来源: 评论
MODEL-BASED CLUSTERING OF LARGE NETWORKS
收藏 引用
ANNALS OF APPLIED STATISTICS 2013年 第2期7卷 1010-1039页
作者: Vu, Duy Q. Hunter, David R. Schweinberger, Michael Univ Melbourne Dept Math & Stat Melbourne Vic 3010 Australia Penn State Univ Dept Stat University Pk PA 16802 USA Rice Univ Dept Stat Houston TX 77251 USA
We describe a network clustering framework, based on finite mixture models, that can be applied to discrete-valued networks with hundreds of thousands of nodes and billions of edge variables. Relative to other recent ... 详细信息
来源: 评论