咨询与建议

限定检索结果

文献类型

  • 907 篇 期刊文献
  • 618 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,537 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,386 篇 工学
    • 946 篇 计算机科学与技术...
    • 488 篇 电气工程
    • 177 篇 信息与通信工程
    • 129 篇 控制科学与工程
    • 128 篇 软件工程
    • 75 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 59 篇 机械工程
    • 48 篇 材料科学与工程(可...
    • 36 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 25 篇 测绘科学与技术
    • 24 篇 化学工程与技术
    • 21 篇 土木工程
    • 21 篇 环境科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 17 篇 力学(可授工学、理...
    • 16 篇 交通运输工程
    • 13 篇 生物工程
  • 327 篇 理学
    • 124 篇 物理学
    • 95 篇 生物学
    • 59 篇 化学
    • 54 篇 数学
    • 35 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 243 篇 医学
    • 146 篇 临床医学
    • 61 篇 特种医学
    • 56 篇 基础医学(可授医学...
  • 109 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 18 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,537 篇 variational auto...
  • 260 篇 deep learning
  • 131 篇 anomaly detectio...
  • 93 篇 machine learning
  • 59 篇 generative adver...
  • 47 篇 generative model
  • 46 篇 training
  • 43 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 36 篇 generative adver...
  • 36 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 27 篇 semi-supervised ...
  • 27 篇 artificial intel...
  • 26 篇 task analysis
  • 26 篇 deep generative ...
  • 25 篇 collaborative fi...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,489 篇 英文
  • 38 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=Variational autoencoder"
1537 条 记 录,以下是1061-1070 订阅
排序:
Encoding High-Level Features: An Approach To Robust Transfer Learning
Encoding High-Level Features: An Approach To Robust Transfer...
收藏 引用
IEEE International Conference on Omni-Layer Intelligent Systems (IEEE COINS)
作者: Cheret, Laurent Yves Emile Ramos de Oliveira, Thiago Eustaquio Alves Lakehead Univ Dept Comp Sci Thunder Bay ON Canada
Transfer Learning (TL) plays a vital role in image classification systems based on Deep Convolutional Neural Networks (DCNNs). Systems employing such technique may be susceptible to distortions on images, motivating t... 详细信息
来源: 评论
VS-Net: Multiscale Spatiotemporal Features for Lightweight Video Salient Document Detection  34
VS-Net: Multiscale Spatiotemporal Features for Lightweight V...
收藏 引用
34th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
作者: Singh, Hemraj Verma, Mridula Cheruku, Ramalingaswamy Natl Inst Technol Warangal Dept Comp Sci & Engg Warangal Telangana India Inst Dev & Res Banking Technol Hyderabad Hyderabad Telangana India
Video Salient Document Detection (VSDD) is an essential task of practical computer vision, which aims to highlight visually salient document regions in video frames. Previous techniques for VSDD focus on learning feat... 详细信息
来源: 评论
Automatic Phenotyping by a Seed-guided Topic Model  22
Automatic Phenotyping by a Seed-guided Topic Model
收藏 引用
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KKD)
作者: Song, Ziyang Hu, Yuanyi Verma, Aman Buckeridge, David L. Li, Yue McGill Univ Sch Comp Sci Montreal PQ Canada McGill Univ Dept Math & Stat Montreal PQ Canada McGill Univ Sch Populat & Global Hlth Montreal PQ Canada
Electronic health records (EHRs) provide rich clinical information and the opportunities to extract epidemiological patterns to understand and predict patient disease risks with suitable machine learning methods such ... 详细信息
来源: 评论
Prediction of MGMT Methylation Status of Glioblastoma Using Radiomics and Latent Space Shape Features  7th
Prediction of MGMT Methylation Status of Glioblastoma Using ...
收藏 引用
7th International Brain Lesion Workshop (BrainLes)
作者: Palsson, Sveinn Cerri, Stefano Van Leemput, Koen Tech Univ Denmark Dept Hlth Technol Lyngby Denmark Harvard Med Sch Massachusetts Gen Hosp Athinoula A Martinos Ctr Biomed Imaging Boston MA 02115 USA
In this paper we propose a method for predicting the status of MGMT promoter methylation in high-grade gliomas. From the available MR images, we segment the tumor using deep convolutional neural networks and extract b... 详细信息
来源: 评论
GENERALIZED ZERO-SHOT LEARNING USING CONDITIONAL WASSERSTEIN autoencoder  47
GENERALIZED ZERO-SHOT LEARNING USING CONDITIONAL WASSERSTEIN...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Kim, Junhan Shim, Byonghyo Seoul Natl Univ Dept Elect & Comp Engn Seoul South Korea
Generalized zero-shot learning (GZSL) is a technique to train a deep learning model to identify unseen classes. Conventionally, conditional generative models have been employed to generate training data for unseen cla... 详细信息
来源: 评论
Smart Meter Data Anomaly Detection Using variational Recurrent autoencoders with Attention  4th
Smart Meter Data Anomaly Detection Using Variational Recurre...
收藏 引用
4th International Conference on Intelligent Technologies and Applications (INTAP)
作者: Dai, Wenjing Liu, Xiufeng Heller, Alfred Nielsen, Per Sieverts Tech Univ Denmark Dept Technol Management & Econ DK-2800 Lyngby Denmark Niras OStre Havnegade 12 DK-9000 Aalborg Denmark
In the digitization of energy systems, sensors and smart meters are increasingly being used to monitor production, operation and demand. Detection of anomalies based on smart meter data is crucial to identify potentia... 详细信息
来源: 评论
Diverse and Adjustable Versatile Image Enhancer
收藏 引用
IEEE ACCESS 2021年 9卷 80883-80896页
作者: Kim, Woojae Anh-Duc Nguyen Kim, Jinwoo Kim, Jongyoo Oh, Heeseok Lee, Sanghoon Yonsei Univ Dept Elect & Elect Engn Seoul 120749 South Korea Microsoft Res Asia Beijing 100080 Peoples R China Hansung Univ Div IT Convergence Engn Seoul 02876 South Korea Yonsei Univ Coll Med Dept Radiol Seoul 120749 South Korea
Enhancing the quality of photographs is a highly subjective process and depends on users' preferences. Hence, it is often more desired to let users choose their own best from a set of diverse and adjustable enhanc... 详细信息
来源: 评论
Probabilistic feature extraction, dose statistic prediction and dose mimicking for automated radiation therapy treatment planning
收藏 引用
MEDICAL PHYSICS 2021年 第9期48卷 4730-4742页
作者: Zhang, Tianfang Bokrantz, Rasmus Olsson, Jimmy KTH Royal Inst Technol Dept Math SE-10044 Stockholm Sweden RaySearch Labs Stockholm Sweden
Purpose We propose a general framework for quantifying predictive uncertainties of dose-related quantities and leveraging this information in a dose mimicking problem in the context of automated radiation therapy trea... 详细信息
来源: 评论
VAE-based Deep SVDD for anomaly detection
收藏 引用
NEUROCOMPUTING 2021年 453卷 131-140页
作者: Zhou, Yu Liang, Xiaomin Zhang, Wei Zhang, Linrang Song, Xing Xidian Univ Natl Key Lab Radar Signal Proc Xian 710071 Peoples R China
Anomaly detection is an essential task for different fields in the real world. The imbalanced data and lack of labels make the task challenging. Deep learning models based on autoencoder (AE) have been applied to addr... 详细信息
来源: 评论
Robustness Analysis of Deep Learning Models for Population Synthesis
收藏 引用
Transportation Research Procedia 2025年 82卷 3790-3806页
作者: Daniel Opoku Mensah Godwin Badu-Marfo Bilal Farooq Laboratory of Innovations in Transportation (LiTrans) Toronto Metropolitan University Toronto Canada
Deep generative models have become useful for synthetic data generation, particularly population synthesis. The models implicitly learn the probability distribution of a dataset and can draw samples from a distributio... 详细信息
来源: 评论