咨询与建议

限定检索结果

文献类型

  • 907 篇 期刊文献
  • 618 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,537 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,386 篇 工学
    • 946 篇 计算机科学与技术...
    • 488 篇 电气工程
    • 177 篇 信息与通信工程
    • 129 篇 控制科学与工程
    • 128 篇 软件工程
    • 75 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 59 篇 机械工程
    • 48 篇 材料科学与工程(可...
    • 36 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 25 篇 测绘科学与技术
    • 24 篇 化学工程与技术
    • 21 篇 土木工程
    • 21 篇 环境科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 17 篇 力学(可授工学、理...
    • 16 篇 交通运输工程
    • 13 篇 生物工程
  • 327 篇 理学
    • 124 篇 物理学
    • 95 篇 生物学
    • 59 篇 化学
    • 54 篇 数学
    • 35 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 243 篇 医学
    • 146 篇 临床医学
    • 61 篇 特种医学
    • 56 篇 基础医学(可授医学...
  • 109 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 18 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,537 篇 variational auto...
  • 260 篇 deep learning
  • 131 篇 anomaly detectio...
  • 93 篇 machine learning
  • 59 篇 generative adver...
  • 47 篇 generative model
  • 46 篇 training
  • 43 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 36 篇 generative adver...
  • 36 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 27 篇 semi-supervised ...
  • 27 篇 artificial intel...
  • 26 篇 task analysis
  • 26 篇 deep generative ...
  • 25 篇 collaborative fi...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,489 篇 英文
  • 38 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=Variational autoencoder"
1537 条 记 录,以下是1201-1210 订阅
排序:
Cardiac MRI Segmentation with Strong Anatomical Guarantees  22nd
Cardiac MRI Segmentation with Strong Anatomical Guarantees
收藏 引用
10th International Workshop on Machine Learning in Medical Imaging (MLMI) / 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
作者: Painchaud, Nathan Skandarani, Youssef Judge, Thierry Bernard, Olivier Lalande, Alain Jodoin, Pierre-Marc Univ Sherbrooke Dept Comp Sci Sherbrooke PQ Canada Univ Bourgogne Franche Comte Dijon France Univ Lyon Lyon France
Recent publications have shown that the segmentation accuracy of modern-day convolutional neural networks (CNN) applied on cardiac MRI can reach the inter-expert variability, a great achievement in this area of resear... 详细信息
来源: 评论
Transfer learning of the expressivity using FLOW metric learning in multispeaker text-to-speech synthesis  21
Transfer learning of the expressivity using FLOW metric lear...
收藏 引用
Interspeech Conference
作者: Kulkarni, Ajinkya Colotte, Vincent Jouvet, Denis Univ Lorraine CNRS INRIA LORIA F-54000 Nancy France
In this paper, we present a novel flow metric learning architecture in a parametric multispeaker expressive text-to-speech (TTS) system. We proposed inverse autoregressive flow (IAF) as a way to perform the variationa... 详细信息
来源: 评论
LEARNING LATENT REPRESENTATIONS FOR STYLE CONTROL AND TRANSFER IN END-TO-END SPEECH SYNTHESIS  44
LEARNING LATENT REPRESENTATIONS FOR STYLE CONTROL AND TRANSF...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhang, Ya-Jie Pan, Shifeng He, Lei Ling, Zhen-Hua Univ Sci & Technol China Natl Engn Lab Speech & Language Informat Proc Hefei Anhui Peoples R China Microsoft China Beijing Peoples R China Microsoft STC Asia Beijing Peoples R China
In this paper, we introduce the variational autoencoder (VAE) to an end-to-end speech synthesis model, to learn the latent representation of speaking styles in an unsupervised manner. The style representation learned ... 详细信息
来源: 评论
Learning Disentangled User Representation Based on Controllable VAE for Recommendation  26th
Learning Disentangled User Representation Based on Controlla...
收藏 引用
26th International Conference on Database Systems for Advanced Applications (DASFAA)
作者: Li, Yunyi Zhao, Pengpeng Wang, Deqing Xian, Xuefeng Liu, Yanchi Sheng, Victor S. Soochow Univ Inst Artificial Intelligence Sch Comp Sci & Technol Suzhou Peoples R China Beihang Univ Suzhou Peoples R China Suzhou Vocat Univ Suzhou Peoples R China NEC Labs Amer Princeton NJ USA Texas Tech Univ Dept Comp Sci Lubbock TX USA
User behaviour on purchasing is always driven by complex latent factors, which are highly disentangled in the real world. Learning latent factorized representation of users can uncover user intentions behind the obser... 详细信息
来源: 评论
VISinger 2: High-Fidelity End-to-End Singing Voice Synthesis Enhanced by Digital Signal Processing Synthesizer  24
VISinger 2: High-Fidelity End-to-End Singing Voice Synthesis...
收藏 引用
Interspeech Conference
作者: Zhang, Yongmao Xue, Heyang Li, Hanzhao Xie, Lei Guo, Tingwei Zhang, Ruixiong Gong, Caixia Northwestern Polytech Univ Audio Speech & Language Proc Grp ASLP NPU Sch Comp Sci Xian Peoples R China DiDi Chuxing Beijing Peoples R China
End-to-end singing voice synthesis (SVS) model VISinger [1] can achieve better performance than the typical two-stage model with fewer parameters. However, VISinger has several problems: text-to-phase problem, the end... 详细信息
来源: 评论
Semi-supervised Instance Segmentation with a Learned Shape Prior  3rd
Semi-supervised Instance Segmentation with a Learned Shape P...
收藏 引用
3rd Int Workshop on Interpretabil of Machine Intelligence in Med Image Comp / 2nd Int Workshop on Med Image Learning with Less Labels and Imperfect Data / 5th Int Workshop on Largescale Annotat of Biomed Data and Expert Label Synthesis
作者: Chen, Long Zhang, Weiwen Wu, Yuli Strauch, Martin Merhof, Dorit Rhein Westfal TH Aachen Inst Imaging & Comp Vis Aachen Germany
To date, most instance segmentation approaches are based on supervised learning that requires a considerable amount of annotated object contours as training ground truth. Here, we propose a framework that searches for... 详细信息
来源: 评论
Deep variational auto-encoders for unsupervised glomerular classification
Deep variational auto-encoders for unsupervised glomerular c...
收藏 引用
SPIE Medical Imaging Symposium / 6th Digital Pathology Conference
作者: Lutnick, Brendon Yacoub, Rabi Jen, Kuang-Yu Tomaszewski, John E. Jain, Sanjay Sarder, Pinaki SUNY Buffalo Dept Pathol & Anat Sci Buffalo NY 14260 USA SUNY Buffalo Med Nephrol Buffalo NY USA Univ Calif Davis Dept Pathol Davis CA 95616 USA Washington Univ Sch Med Dept Med Nephrol St Louis MO 63130 USA
The adoption of deep learning techniques in medical applications has thus far been limited by the availability of the large labeled datasets required to robustly train neural networks, as well as difficulty interpreti... 详细信息
来源: 评论
Comparing Beta-VAE toWGAN-GP for Time Series Augmentation to Improve Classification Performance  14th
Comparing Beta-VAE toWGAN-GP for Time Series Augmentation to...
收藏 引用
14th International Conference on Agents and Artificial Intelligence (ICAART)
作者: Kavran, Domen Zalik, Borut Lukac, Niko Univ Maribor Fac Elect Engn & Comp Sci Koroska Cesta 46 Maribor Slovenia
Datasets often lack diversity to train robust classification models, capable of being used in real-life scenarios. Neural network-based generative models learn characteristics to generate synthetic (i.e. augmented) da... 详细信息
来源: 评论
Trace Data Analytics with Knowledge Distillation DM: Big Data Management and Mining  31
Trace Data Analytics with Knowledge Distillation DM: Big Dat...
收藏 引用
31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
作者: Lee, Janghwan Xiong, Wei Jang, Wonhyouk Samsung Elect Samsung Display Amer Lab San Jose CA 95134 USA Samsung Display Display Res Ctr Yongin South Korea
In this paper, we propose the "trace data analytics" for classifying fault conditions from multivariate time series sensor signals using well-known deep CNN models. In our approach, multiple sensor signals a... 详细信息
来源: 评论
Quantifying Common Support between Multiple Treatment Groups Using a Contrastive-VAE  6
Quantifying Common Support between Multiple Treatment Groups...
收藏 引用
6th Machine Learning for Health (ML4H) Workshop - Advancing Healthcare for All as a part of NeurIPS Conference
作者: Dai, Wangzhi Stultz, Collin M. MIT Cambridge MA 02139 USA Massachusetts Gen Hosp Boston MA 02114 USA
Estimating the effect of a given medical treatment on individual patients involves evaluating how clinical outcomes are affected by the treatment in question. Robust estimates of the treatment effect for a given patie... 详细信息
来源: 评论