咨询与建议

限定检索结果

文献类型

  • 904 篇 期刊文献
  • 616 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,532 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,383 篇 工学
    • 942 篇 计算机科学与技术...
    • 488 篇 电气工程
    • 175 篇 信息与通信工程
    • 129 篇 控制科学与工程
    • 128 篇 软件工程
    • 75 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 60 篇 机械工程
    • 49 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 31 篇 石油与天然气工程
    • 25 篇 测绘科学与技术
    • 23 篇 化学工程与技术
    • 21 篇 土木工程
    • 21 篇 环境科学与工程(可...
    • 18 篇 动力工程及工程热...
    • 17 篇 力学(可授工学、理...
    • 16 篇 交通运输工程
    • 13 篇 生物工程
  • 327 篇 理学
    • 125 篇 物理学
    • 96 篇 生物学
    • 58 篇 化学
    • 53 篇 数学
    • 35 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 242 篇 医学
    • 145 篇 临床医学
    • 61 篇 特种医学
    • 55 篇 基础医学(可授医学...
  • 109 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 19 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,532 篇 variational auto...
  • 259 篇 deep learning
  • 132 篇 anomaly detectio...
  • 93 篇 machine learning
  • 59 篇 generative adver...
  • 47 篇 generative model
  • 47 篇 training
  • 43 篇 unsupervised lea...
  • 42 篇 feature extracti...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 35 篇 generative adver...
  • 35 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 27 篇 semi-supervised ...
  • 27 篇 artificial intel...
  • 26 篇 task analysis
  • 26 篇 deep generative ...
  • 25 篇 collaborative fi...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,484 篇 英文
  • 38 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=Variational autoencoder"
1532 条 记 录,以下是1221-1230 订阅
排序:
Integrating Topic Information into VAE for Text Semantic Similarity  1
收藏 引用
25th International Conference on Neural Information Processing (ICONIP)
作者: Su, Xiangdong Yan, Rong Gong, Zheng Fu, Yujiao Xu, Heng Inner Mongolia Univ Coll Comp Sci Hohhot 010021 Peoples R China Inner Mongolia Key Lab Mongolian Informat Proc Te Hohhot 010021 Peoples R China
Representation learning is an essential process in the text similarity task. The methods based on neural variational inference first learn the semantic representation of the texts, and then measure the similar degree ... 详细信息
来源: 评论
Style Transfer of Abstract Drum Patterns Using a Light-Weight Hierarchical autoencoder  1
收藏 引用
30th Benelux Conference on Artificial Intelligence (BNAIC)
作者: Voschezang, Mark Vrije Univ Amsterdam NL-1081 HV Amsterdam Netherlands
Many improvements have been made in the field of generative modelling. State-of-the-art unsupervised models have been able to transfer the style of existing media with photo-realistic quality. However, these improveme... 详细信息
来源: 评论
Detection of Abnormal Folding Patterns with Unsupervised Deep Generative Models  4th
Detection of Abnormal Folding Patterns with Unsupervised Dee...
收藏 引用
4th International Workshop on Machine Learning in Clinical Neuroimaging (MLCN)
作者: Guillon, Louise Cagna, Bastien Dufumier, Benoit Chavas, Joel Riviere, Denis Mangin, Jean-Francois Univ Paris Saclay CEA CNRS NeuroSpinBaobab Gif Sur Yvette France IPParis Telecom Paris LTCI Palaiseau France
Although the main structures of cortical folding are present in each human brain, the folding pattern is unique to each individual. Because of this large normal variability, the identification of abnormal patterns ass... 详细信息
来源: 评论
A CLOSER LOOK AT autoencoderS FOR UNSUPERVISED ANOMALY DETECTION  47
A CLOSER LOOK AT AUTOENCODERS FOR UNSUPERVISED ANOMALY DETEC...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Oyedotun, Oyebade K. Aouada, Djamila Univ Luxembourg Interdisciplinary Ctr Secur Reliabil & Trust Snt L-1855 Luxembourg Luxembourg
Unsupervised anomaly detection is a challenging problem, where the aim is to detect irregular data instances. Interestingly, generative models can learn data distribution, and thus have been proposed for anomaly detec... 详细信息
来源: 评论
The SJTU Robust Anti-spoofing System for the ASVspoof 2019 Challenge  20
The SJTU Robust Anti-spoofing System for the ASVspoof 2019 C...
收藏 引用
Interspeech Conference
作者: Yang, Yexin Wang, Hongji Dinkel, Heinrich Chen, Zhengyang Wang, Shuai Qian, Yanmin Yu, Kai Shanghai Jiao Tong Univ Dept Comp Sci & Engn SpeechLab MoE Key Lab Artificial Intelligence Shanghai Peoples R China
The robustness of an anti-spoofing system is progressively more important in order to develop a reliable speaker verification system. Previous challenges and datasets mainly focus on a specific type of spoofing attack... 详细信息
来源: 评论
Skip the Benchmark: Generating System-Level High-Level Synthesis Data using Generative Machine Learning  24
Skip the Benchmark: Generating System-Level High-Level Synth...
收藏 引用
34th Great Lakes Symposium on VLSI (GLSVLSI)
作者: Liao, Yuchao Adegbija, Tosiron Lysecky, Roman Tandon, Ravi Univ Arizona Elect & Comp Engn Tucson AZ 85721 USA
High-Level Synthesis (HLS) Design Space Exploration (DSE) is a widely accepted approach for efficiently exploring Pareto-optimal and optimal hardware solutions during the HLS process. Several HLS benchmarks and datase... 详细信息
来源: 评论
Generalized Zero-Shot Learning Based on Manifold Alignment  16
Generalized Zero-Shot Learning Based on Manifold Alignment
收藏 引用
16th IEEE International Conference on Signal Processing (ICSP)
作者: Xu, Rui Shao, Shuai Liu, Baodi Liu, Weifeng China Univ Petr East China Coll Control Sci & Engn Qingdao Peoples R China Zhejiang Lab Hangzhou Peoples R China
Generalized zero-shot learning is a method that can classify seen and unseen samples by learning training samples' visual and semantic modal information. Visual modal information is generally extracted by feature ... 详细信息
来源: 评论
Encoding High-Level Features: An Approach To Robust Transfer Learning
Encoding High-Level Features: An Approach To Robust Transfer...
收藏 引用
IEEE International Conference on Omni-Layer Intelligent Systems (IEEE COINS)
作者: Cheret, Laurent Yves Emile Ramos de Oliveira, Thiago Eustaquio Alves Lakehead Univ Dept Comp Sci Thunder Bay ON Canada
Transfer Learning (TL) plays a vital role in image classification systems based on Deep Convolutional Neural Networks (DCNNs). Systems employing such technique may be susceptible to distortions on images, motivating t... 详细信息
来源: 评论
A Deep Generative Recommendation Method for Unbiased Learning from Implicit Feedback  23
A Deep Generative Recommendation Method for Unbiased Learnin...
收藏 引用
13th ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR)
作者: Gupta, Shashank Oosterhuis, Harrie de Rijke, Maarten Univ Amsterdam Amsterdam Netherlands Radboud Univ Nijmegen Nijmegen Netherlands
variational autoencoders (VAEs) are the state-of-the-art model for recommendation with implicit feedback signals. Unfortunately, implicit feedback suffers from selection bias, e.g., popularity bias, position bias, etc... 详细信息
来源: 评论
Knowledge Extraction from XCSR Based on Dimensionality Reduction and Deep Generative Models
Knowledge Extraction from XCSR Based on Dimensionality Reduc...
收藏 引用
IEEE Congress on Evolutionary Computation (IEEE CEC)
作者: Tadokoro, Masakazu Hasegawa, Satoshi Tatsumi, Takato Sato, Hiroyuki Takadama, Keiki Univ Electrocommun Tokyo Japan
This paper proposes a novel learning classifier system (LCS) framework named ELSDeCS (Encoding, Learning, Sampling, and Decoding Classifier System) which can employ any dimensionality reduction method as pre-processin... 详细信息
来源: 评论