咨询与建议

限定检索结果

文献类型

  • 907 篇 期刊文献
  • 618 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,537 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,386 篇 工学
    • 946 篇 计算机科学与技术...
    • 488 篇 电气工程
    • 177 篇 信息与通信工程
    • 129 篇 控制科学与工程
    • 128 篇 软件工程
    • 75 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 59 篇 机械工程
    • 48 篇 材料科学与工程(可...
    • 36 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 25 篇 测绘科学与技术
    • 24 篇 化学工程与技术
    • 21 篇 土木工程
    • 21 篇 环境科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 17 篇 力学(可授工学、理...
    • 16 篇 交通运输工程
    • 13 篇 生物工程
  • 327 篇 理学
    • 124 篇 物理学
    • 95 篇 生物学
    • 59 篇 化学
    • 54 篇 数学
    • 35 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 243 篇 医学
    • 146 篇 临床医学
    • 61 篇 特种医学
    • 56 篇 基础医学(可授医学...
  • 109 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 18 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,537 篇 variational auto...
  • 260 篇 deep learning
  • 131 篇 anomaly detectio...
  • 93 篇 machine learning
  • 59 篇 generative adver...
  • 47 篇 generative model
  • 46 篇 training
  • 43 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 36 篇 generative adver...
  • 36 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 27 篇 semi-supervised ...
  • 27 篇 artificial intel...
  • 26 篇 task analysis
  • 26 篇 deep generative ...
  • 25 篇 collaborative fi...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,489 篇 英文
  • 38 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=Variational autoencoder"
1537 条 记 录,以下是1251-1260 订阅
排序:
Future Network Traffic Matrix Synthesis and Estimation Based on Deep Generative Models  30
Future Network Traffic Matrix Synthesis and Estimation Based...
收藏 引用
30th International Conference on Computer Communications and Networks (ICCCN)
作者: Kakkavas, Grigorios Kalntis, Michail Karyotis, Vasileios Papavassiliou, Symeon Natl Tech Univ Athens Sch Elect & Comp Engn Iroon Polytech 9 Athens 15780 Greece Ionian Univ Dept Informat Tsirigoti Sq 7 Corfu 49132 Greece
Traffic matrices (TMs) contain information that is essential for network management, traffic engineering, and anomaly detection. However, constructing a TM through direct traffic measurements has a high administrative... 详细信息
来源: 评论
Investigation of using disentangled and interpretable representations for one-shot cross-lingual voice conversion  19
Investigation of using disentangled and interpretable repres...
收藏 引用
19th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2018)
作者: Mohammadi, Seyed Hamidreza Kim, Taehwan ObEN Inc Pasadena CA 91103 USA
We study the problem of cross-lingual voice conversion in non-parallel speech corpora and one-shot learning setting. Most prior work require either parallel speech corpora or enough amount of training data from a targ... 详细信息
来源: 评论
A STUDY ON THE EFFECT OF COLOR SPACES IN LEARNED IMAGE COMPRESSION  31
A STUDY ON THE EFFECT OF COLOR SPACES IN LEARNED IMAGE COMPR...
收藏 引用
2024 International Conference on Image Processing
作者: Prativadibhayankaram, Srivatsa Panda, Mahadev Prasad Seiler, Juergen Richter, Thomas Sparenberg, Heiko Foessel, Siegfried Kaup, Andre Fraunhofer Inst Integrated Circuits IIS Moving Picture Technol Erlangen Germany Friedrich Alexander Univ Erlangen Nurnberg Multimedia Commun & Signal Proc Erlangen Germany RheinMain Univ Appl Sci Media Concept & Prod Wiesbaden Germany
In this work, we present a comparison between color spaces namely YUV, LAB, RGB and their effect on learned image compression. For this we use the structure and color based learned image codec (SLIC) from our prior wo... 详细信息
来源: 评论
Better Integrating Vision and Semantics for Improving Few-shot Classification  23
Better Integrating Vision and Semantics for Improving Few-sh...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Li, Zhuoling Wang, Yong Cent South Univ Changsha Hunan Peoples R China
Some recent methods address few-shot classification by integrating visual and semantic prototypes. However, they usually ignore the difference in feature structure between the visual and semantic modalities, which lea... 详细信息
来源: 评论
Crickets, Cross-Veins, Crumpling, Crystals, and Computers
Crickets, Cross-Veins, Crumpling, Crystals, and Computers
收藏 引用
作者: Hoffmann, Jordan Harvard University
学位级别:Ph.D., Doctor of Philosophy
The world around us appears unimaginably complex: creases on sheets of paper, the patterns on animals, not to mention the assembly of life itself. In this thesis, I use computational tools to shed light on the organiz... 详细信息
来源: 评论
Brain2Image: Converting Brain Signals into Images  17
<i>Brain2Image</i>: Converting Brain Signals into Images
收藏 引用
25th ACM International Conference on Multimedia (MM)
作者: Kavasidis, Isaak Palazzo, Simone Spampinato, Concetto Giordano, Daniela Shah, Mubarak Univ Catania PeRCeiVe Lab Via Santa Sofia 102 I-95127 Catania Italy Univ Cent Florida Ctr Res Comp Vis 4328 Scorpius St Orlando FL 32816 USA
Reading the human mind has been a hot topic in the last decades, and recent research in neuroscience has found evidence on the possibility of decoding, from neuroimaging data, how the human brain works. At the same ti... 详细信息
来源: 评论
Deep Incremental Learning for Efficient High-Fidelity Face Tracking
Deep Incremental Learning for Efficient High-Fidelity Face T...
收藏 引用
11th ACM SIGGRAPH Conference and Exhibition on Computer Graphics and Interactive Techniques in Asia (SA)
作者: Wu, Chenglei Shiratori, Takaaki Sheikh, Yaser Facebook Real Labs Pittsburgh PA 15213 USA
In this paper, we present an incremental learning framework for efficient and accurate facial performance tracking. Our approach is to alternate the modeling step, which takes tracked meshes and texture maps to train ... 详细信息
来源: 评论
A Radar HRRP Target Recognition Method Based on Conditional Wasserstein VAEGAN and 1-D CNN  5th
A Radar HRRP Target Recognition Method Based on Conditional ...
收藏 引用
5th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: He, Jiaxing Wang, Xiaodan Xiang, Qian Air Force Engn Univ Xian Shaanxi Peoples R China
Radar high resolution range profile (HRRP) contains important structural features such as target size and scattering center distribution, which has attracted extensive attention in the field of radar target recognitio... 详细信息
来源: 评论
Few Shot Hematopoietic Cell Classification  6
Few Shot Hematopoietic Cell Classification
收藏 引用
6th International Conference on Medical Imaging with Deep Learning (MIDL)
作者: Nguyen, Vu Howlader, Prantik Hou, Le Samaras, Dimitris Gupta, Rajarsi Saltz, Joel SUNY Stony Brook Dept Comp Sci Stony Brook NY USA SUNY Stony Brook Dept Biomed Informat Stony Brook NY USA
We propose a few shot learning approach for the problem of hematopoietic cell classification in digital pathology. In hematopoiesis cell classification, the classes correspond to the different stages of the cellular m... 详细信息
来源: 评论
Protecting gender and identity with disentangled speech representations  22
Protecting gender and identity with disentangled speech repr...
收藏 引用
Interspeech Conference
作者: Stoidis, Dimitrios Cavallaro, Andrea Queen Mary Univ London Ctr Intelligent Sensing London England
Besides its linguistic content, our speech is rich in biometric information that can be inferred by classifiers. Learning privacy-preserving representations for speech signals enables downstream tasks without sharing ... 详细信息
来源: 评论